望告知SSIM阳光市场的交易系统优势?

介绍x264参数的用法与目的。参数解释的顺序对应以下帮助内容中的参数出现顺序。

x264内置帮助文档,如需查看帮助,运行x264 加参数 –help, –longhelp 或 –fullhelp。三个选项提供不同详细程度的解释。

用于简化命令行而设计的系统。各预设模板所对应的参数设定,详见帮助:x264.exe –fullhelp.

该选项限制输出视频流的profile。如命令中指定profile,则会忽视其他对之影响的参数,也就是说,只要指定profile,就能保证输出流的兼容性。一旦使用该选项,就无法进行无损编码 (–qp 0 or –crf 0).
若播放机只支持某种profile,编码时需相应指定。大多数解码器都支持High profile,所以无需如此设置。

设定x264输出的IDR帧(即关键帧)之间的最大间隔。可以设定为”infinite”(无穷),则仅在场景切换时出现IDR帧。
IDR帧相当于视频流中的”分界符”:任何帧不可参考IDR帧另一侧的数据。 另外,IDR帧本身也是I帧,不参考任何其它帧。这意味着,播放器可从最近的I帧开始解码,而无需从头开始。故而,IDR帧可以用作于视频的定位点(seek point)。
此项功能是在视频定位能力和编码效率之间做权衡。因为I帧体积远大于P/B帧(低速运动的场景中,可达到10倍多),所以,当在VBV设定很低时(如小于1秒的缓冲大小),极其不利于码率控制。若遇此情况,需研究intra-refresh。
默认值适用于绝大多数视频。对于编码蓝光、广播、在线流媒体或特殊情况下,可能需要将GOP长度设得很小(通常约1x fps)。

禁用IDR帧,取而代之的是x264每隔keyint长度的帧,对帧内的每个宏块(macroblock)进行帧内编码(intra coding)。各块以列为单位,沿水平方向刷新,称之为“刷新波”。该方式适用于网络延迟较低的流媒体,与标准IDR帧的方式相比,更易使每帧的数据量大小接近恒定。该方式同时增强了视频流对数据丢包的恢复能力。此选项会降低压缩效率,因此必要时才可使用。
帧内编码块(Intra-blocks)仅出现于P帧 - 跟在B帧之后出现的第一个P帧的刷新波宽于其它P帧
损失压缩效率的主要原因在于:刷新波”未刷新”(左侧)的宏块无法参考”已刷新”(右侧)的数据。

设置x264采用的最大连续B帧数。
B帧类似于P帧,但它还可以利用后续时间的帧进行运动预测,因此能大大增加压缩率。B帧的平均质量受pbratio控制。
出于对未来帧的需求,编码器的延时性增加了。参见 –sync-lookahead
x264 偶尔区分两种不同的B帧。大写’B’代表能被其它帧参考的B帧(参见b-pyramid),而小写’b’表示不能被参考的B帧。如果你见到’B’与’b’混在一起,通常就是上述的区别。当区别不重要时,则用’B’来泛指所有B帧。
B帧的另一优势在于高效的快进能力,因为解码器可跳过B帧直接解析P帧,速度由每次1帧提升为(bframs设置值+1)帧。以三个连续B帧的视频为例,解码器能以整个minigop为单位来定位,达到4倍速。

设置自适应B帧放置的决策算法。该选项控制x264如何决定该放置P帧还是B帧。
0 关闭:永远选择B帧。此值效果相当于旧选项no-b-adapt。
1 “快速”算法:较快。b-frames设定越高,增速效果越明显。此模式下强烈推荐配合使用–bframes 16。
2 “优化”算法:较慢。b-frames设定越高,减速效果越明显。多次编码模式下,此选项只需在1st pass使用,因为帧类型在该pass中决定。

控制B帧替代P帧的概率。越大(正数)则权重越偏向于B帧。越小(负数)则相反。此数值无量纲。范围从-100到100。100/-100并不保证 所有/没有 P帧被替换掉。(可用 –b-adapt 0 来实现)
除非你认为自己的码率控制策略优于x264,否则别改动此项。

允许B帧被其它帧参考。若关闭此设定,所有帧只能参考I帧或P帧。虽然I/P帧的质量高,更有参考价值,但B帧也可加以利用。被参考的B帧,其量化值将介于P帧与“一次性”的b帧之间。逻辑上讲,要参考之前的B帧,则必须告知x264至少使用2个B帧。
的小画面组(minigop),其中的B帧还被其它b帧用作参考,而b帧不被任何帧参考,因为称为“一次性”。当b-pyramid开启时,中间的B[3]帧将在P帧之后,b帧之前被编码,因为它是后续两个b帧的参考。P[1]将是b[1]和b[2]的L0(过去)参考,而B[3]和P[2]则是b[1]和b[2]的L1(未来)参考。编码与流的顺序将是P[1]P[2]B[3]b[1]b[2]b[4]b[5]。
目前x264的b-pyramid仅支持单层的H.264层级,即以B帧为参考的b帧不能进一步被参考。
对于蓝光的编码,必须用“none”或“strict”。
none: 不允许B帧作为参考帧
strict: 每个minigop中,只允许一个B帧作为参考帧;受限于蓝光标准

开放画面组(Open-GOP) 技术能提升编码效率。但一些解码器对open-GOP的视频流支持不完全,所以至今依然默认为关闭。若想使用,应先测试保证所有用到的解码器能完整支持,或等待解码器完善该项支持。

控制图像解码缓存(DPB: Decoded Picture Buffer)的大小。数值范围0至16。简而言之,此值表示每个P帧能利用之前(译者注:“之前”指的是解码顺序,而非显示顺序)的多少帧作为参考(B帧能利用的P帧数要少1、2帧,取决于是否开启B帧参考)。可被参考的最小ref是1

完全禁用循环滤镜,不推荐使用。

设置切片的最大字节数, 包含预估的NAL额外量(overhead)。(目前与–interlaced互不兼容)
设置切片的最大宏块数。(目前与–interlaced互不兼容)
启用交错(隔行)编码,并指定奇数场(top field)为先。x264的交错编码方式采用MBAFF,效率低于逐行编码。因此,仅在需要隔行显示(或无法将视频预先去交错)时,才使用。开启后,同时会开启pic-struct
启用交错(隔行)编码,并指定偶数场(top field)为先。详见–tff
强制x264以逐行模式输出。

启用受限的帧内预测,在编码SVC标准视频的底层(base layer)子视频时必须开启。由于EveryoneTM 忽略SVC,你也可以忽略这个开关。

将视频流标记为交错(隔行),哪怕并非为交错式编码。可用于编码蓝光兼容的25p和30p视频。

编码3D视频时,此参数在码流中插入一个标志,告知解码器此3D视频是如何合并的。可选值及其意义参见x264 –fullhelp

三种码率控制方式的第一种。设置x264以恒定量化值(Constant Quantizer) 方式编码视频。该数字指定P帧的量化值。I帧和B帧的量化值相应由–ipratio和–pbratio决定。CQ模式的目标在于一定的量化值,因此最 终文件大小不可知(虽然有方法可以较为准确的估计)。设定为0则输出的视频为无损。对于相同的视觉质量,qp所产生的文件体积要大于–crf。qp模式 会禁用自适应量化(adaptive quantization),因为“恒定量化值”的定义已经说明了,不会自适应改变量化值。
此选项与–bitrate和–crf相互冲突。关于各种码率控制系统,详见this writeup 。
一般最好用–crf。不过qp模式不需要lookahead,所以速度更快。

三种码率控制方式的第二种。以目标比特率来编码视频。目标比特率模式意味着最终文件大小可知,但最终质量不可知。x264会尝试令视频的平均码率接近目标码率。所用参数的比特率单位是千比特/秒(kilobits/sec) (8bits = 1byte and so on) 注意:1 kilobit 是1000,不是1024 bits
此项设定常与–pass一同使用,进行二次编码。
此选项与–qp和–crf相互冲突。关于各种码率控制系统,详见this writeup 。

最后一种码率控制方法:恒定质量(恒定码率因子Constant Ratefactor)。 qp目标在于一定的量化值,bitrate目标在于一定的文件体积,crf的目标则在于一定的“质量”。基本上就是让crf n产生的视频的感官质量等同于qp n,但体积更小。crf值的单位叫做“码率因子”。
为此目的,CRF降低“不是很重要”的帧的质量。在这里,“不太重要”表示复杂或高速运动的场景,这些场景中,质量要么代价更高(更高码率),要么不易被察觉。这些帧的量化值将会增大。从这些帧中省下来的码率被用于更高效的场景。
CRF编码时间短于2pass bitrate模式,因为省去了2pass模式中的1st pass过程。另外,CRF编码模式的比特率无法估计。由你自己决定哪种码率控制方式更适用你的情况。
此选项与–qp和–bitrate相互冲突。关于各种码率控制系统,详见this writeup 。

与–qpmax类似,不同的是,qpmax设定最大量化值,crf-max设置最大码率因子。该选项仅在使用CRF并开启VBV时有效。该选项保证 x264在降低码率因子(即”质量”)时,不会低于某个给定值,哪怕这么做会妨碍VBV限制。此选项最适用于自定义流媒体服务器。详见initial commit message.

设定x264所使用的最小量化值。量化值越低,输出视频越接近输入视频。低到一定程度时,输出将看上去跟输入相同,虽然并不是完全相同。通常没有理由允许x264再花费比这更多的码率编码宏块了。
若开启了自适应量化(adaptive quantization,默认开启),则不建议提高qpmin,因为这样一来会降低画面内平坦背景部分的质量。

与qpmin相反,它设定了x264可用的最大量化值。默认值51是H.264规范中最高的可用值,代表极低质量。该默认值等于是禁用了qpmax。如需限定x264输出视频的最低质量,可以考虑降低该值(一般别低于30-40),但通常不推荐改动。

相邻两帧之间量化值之差的最大值。

在1-pass bitrate模式下,该设置控制x264可以偏离给定目标码率的百分比。可以设置为“inf”(无穷)来完全禁止溢出检测。最低可设置为0.01。设定 地越高,x264越能对片尾复杂场景做出反应。此参数的单位是百分比(1.0 = 1% 比特率偏移).
大多数电影(比如任意动作电影)都在结尾高潮处最复杂。1pass编码不知道这点,所以那里的所需码率通常都低估了。ratetol设为inf可弥补此点,让编码功能更接近–crf,但文件体积也会超出限定。
启用VBV(比如指定了–vbv-*选项)时,此选项也影响VBV的厉害程度。提高该值会允许更大的VBV波动,也增加了破坏VBV设定的风险。对于此目的,该值的单位任意。

修改I帧与P帧平均量化值的比例。值越高,I帧的质量越高。开启mbtree(默认开启)时,此项失效,mbtree自动计算最优量化值。

修改P帧与B帧平均量化值的比例。值越高,B帧的质量越低。开启mbtree(默认开启)时无效,因为mbtree自动计算最优值。

编码时,在色度平面(chroma planes)量化值基础上,增加一个偏移量,可以是负数。
当使用psy选项(psy-rd或psy-trellis)时,x264会自动降低此值(一般在此值基础上减去2),以补偿psy优化时默认过于偏重亮度(luma)质量而忽视色度(chroma)质量的问题。
注:x264 仅在量化值小于等于29时,对亮度和色度平面使用相同的量化值。超过之后,色度量化值的增加将会慢于亮度,直至最终达到亮度q51、色度q39。这是H.264标准的要求。

若关闭AQ,x264倾向于对低细节度的平滑区域使用过低码率,AQ可以更好把码率分配到各个宏块中. 该选项改变AQ重新安排码率的幅度:
1: 允许AQ在整个视频中和帧内重新分配码率
2: 自方差AQ(实验阶段),尝试逐帧调整强度

此设置对于2pass编码很重要,控制x264如何处理–stats文件。有三个选项:
3: 读取stats文件,并更新之
stats文件包含输入视频每一帧的信息,作为x264的输入用于提高输出品质。大致如此:跑一次1st pass生成stats文件,然后2nd pass就能生成优化过的视频。改进的原因主要在于更优的码率控制。

禁用macroblock tree码率控制。使用macroblock tree码率控制会记录时间方向上的各帧变化并相应权衡,因此在总体上改进了压缩。其概念与AQ同出一辙(AQ降低高复杂度区域的质量,将码率用于低复杂度的区域),但却是从时间方向上施行控制,因此与qcomp十分相似,而qcomp本身也影响mb-tree的强度。
对于多次编码模式,需要在现有stats文件基础上,增加一个大体积stats文件。

qcomp在“高成本”的高运动帧与“低成本”的低运动帧之间权衡分配码率。极端设置qcomp=0.0趋于真正的恒定比特率,通常会造成高运动场景十分难看,而将宝贵的码率用于让低运动场景看着很完美。另一极端设置qcomp=1.0则能达到近似恒定量化参数(QP),并完全关闭x264的aq-mode和时间方向的RDO(mb-tree),于是码率被浪费在高复杂度的场景上,而高复杂度的场景无法用作未来远处的帧的参考,因为帧与帧之间的变化太大。
与mbtree一起使用时,也会影响mbtree与aq-strength的强度,而这两项倾向于将更多码率用于低复杂度的场景和宏块(macroblock)。(qcomp越大,则aq与mbtree越弱)。qcomp默认值为0.6,不要改动。

根据给定的半径对量化曲线进行高斯模糊(gaussian blur)。分配给各帧的量化值在时间方向上与相邻几帧相模糊,以限制量化值波动。

量化曲线压缩后,根据给定的半径对量化曲线进行高斯模糊。该选项不怎么重要。

对视频不同段(zone)进行参数调整。大多数x264选项都可以针对各段进行调整。
多段之间用“/”来分隔

量化值设为-1允许x264自动选择最优量化值。适用于只想指定帧类型的情况
手动指定大量帧的类型和量化值,同时又让x264决定其中间的帧,这么做会降低x264的性能

设置’直接’运动向量的预测模式。两种模式可选:spatial和temporal。也可选择none来关闭直接运动向量,或选auto允许x264在两个参数间切换。若设为auto,x264会在编码结束时输出相应的使用信息。“auto”在2pass编码模式下作用最佳,但也能在单次编码中使用。在1st-pass的auto模式下,x264会不断记录两种方法效果的滑动平均值,并以此为依据决定下一次使用哪个方法。注意,只应在1st 直接预测指挥x264在猜测B帧某些部分的运动时,使用何种方法。既可借助该帧的其它部分(spatial),也可与下一个P帧作比较(temporal)。最好将此项设为自动,好让x264自己决定哪种方法更好。不要以为设none能加快速度,恰恰相反,既浪费码率又让画面难看,强烈不推荐。如果你要在spatial和temporal之间做选择,spatial通常更优。

有时,x264会根据前后帧来决定一B帧的运动补偿。当对B帧进行权重,每一帧所拥有的影响力与其对正在编码的帧的距离相关,而非具有相同的影响。所以weight-b有助于压缩淡入淡出。开启此选项将关闭该功能。

开启显式权重预测,提升P帧压缩率,同时改善淡入淡出场景的质量,模式越高,编码速度越慢。

全像素(full-pixel)运动估计方法。5种选择:
最简单的搜索方式,从最优预测值出发,往上、左、下、右一个像素处检测运动向量,挑选最好值,然后重复该步骤,直至找不到更优的运动向量。
策略类似,但它对周围六个点进行range-2搜索,因此称为六角形搜索。此方法效率大大高于dia,且速度相当,因此通常编码常用此项。
比hex慢很多,但能搜索复杂的多六角形,以避免错过很难找到的运动向量。与hex和dia相似,merange参数直接控制umh的搜索半径,使用者可自行增减搜索的空间尺寸。
在最优预测值附近merange范围内的整个空间内,以高度优化的智能方式搜索运动向量。相当于数学上的穷举法,搜索区域内的每一个运动向量,但是更快些。然而,此方法远远慢于UMH,且好处不多,对于普通编码没有太大用处。
算法尝试对各个运动向量近似哈达玛变换比较法。与exhaustive类似,但效果略好,速度略慢。

merange控制运动搜索最大范围的像素数。hex和dia的范围在4-16,默认16;umh和esa可以大于默认值16,在更广的空间内进行运动搜索,对于高清视频和高速运动视频较为有用。注:umh, esa, tesa模式下增加会大幅降低编码速度。
merange开得太高(比如>64)也不太可能找到更多有用的运动向量,有时反而会导致压缩率略微降低:在少见情形下,某些运动向量只因当前有用而被选中,但由于这些向量的delta过大而影响了对之后运动向量的预测,得不偿失。
尽管这种影响非常小,几乎可以忽略不计,但一般都不应使用这么变态的设置。见此贴

设置线程之间的最小运动向量缓冲。不要改动。

通常,运动预测同时作用于亮度和色度平面,此选项禁用色度运动预测,以换取少量的速度提升。

禁用所有会降低PSNR或SSIM的视觉优化。同时禁用了内部psy优化,此功能无法通过x264命令行控制。

Mixed refs基于8x8区块选择参考,而非基于宏块,对于多ref模式能提升质量,但速度减慢。设定此项,会禁用该功能。

自适应8x8 DCT启用I帧内的智能自适应8x8 transforms,此选项禁用该功能。

进行格子(Trellis)量化,以提升效率。
1. 仅用于最终编码的宏块
2. 用于所有模式决策
用于宏块能较好地平衡速度和效率,用于所有模式(2)时会进一步降低速度,有时还会令细节模糊。

禁用早期P帧跳过检测。低码率情况下,能提升一定的质量,但速度代价很大。高码率情况下,对速度和质量都影响不大。

为节省空间,x264会将某些块清零,因为其认为这些块即使清零也不会被观看者察觉到。这样通常能以忽略不计的质量损失换来编码效率的提升。但在极罕见的情况下会出错导致可见的痕迹(artifact)。此情况可以通过令x264不丢弃DCT块而减轻。
开启此选项,则禁用该功能。
进行快速降噪。根据此值估计影片的噪声,并尝试通过丢弃微小细节来去噪,然后再进行量化。效果也许不如外部降噪滤镜,但速度很快。
推荐值: 默认或(如需降噪:100至1000)

设定inter/intra亮度量化deadzone的大小。Deadzones应介于0~32。deadzone值设定了x264对于何种精细程 度的细节,会选择丢弃而不保留。太精细的细节很难察觉,且编码代价大,丢弃这类细节能防止在低回报画面上浪费码率。Deadzone与Trellis互不相容 。

将所有自定义量化矩阵设为内置预设值。预设值包括flat和JVT。

根据指定的JM-compatible的文件,设置所有自定义量化矩阵。自动忽略其它–cqm*选项。

–cqm4: 设置所有4x4量化矩阵。接受用逗号分隔的16个整数
–cqm8: 设置所有8x8量化矩阵。接受用逗号分隔的64个整数

这些选项在输出流中设定标志,可以被解码工具读取并做相应处理。值得注意的是,大多数选项在大多数情境下都是无意义 的,所以通常都被解码软件所忽略。
如何处理过扫描。此处过扫描指的是显示设备只显示画面的一部分。
show - 指示显示全画面,理论上设定后会必须遵守。
crop - 指示可在回放设备上使用过扫描,未必会被遵守。
推荐: 编码前先切掉那部分,然后如果设备支持,就用show,若不支持,就忽略。
指示视频在编码/数字化之前是什么类型。
推荐: 视频源的类型,或 未定义
指示亮度与色度level使用全范围还是有限的level。若设为TV,则使用有限的范围。若设为auto,则使用与输入相同的范围。
注意:若range与input-range的值不同,则编码时将进行范围转换。
简单解释,参见this
选择在转换为RGB时使用哪种基色。
推荐值: 默认,除非你知道源用的是哪种
设定所使用的光电传输特性。(设置用于修正的gamma曲线)
推荐值: 默认,除非你知道源用的是哪种

指定输出文件名。根据扩展名决定输出视频的格式。若扩展名无法识别,则默认输出raw视频流(通常以.264扩展名保存)

‘auto’会自动根据输出文件的文件名来挑选。

设置x264分析输入视频所使用的demuxer和解码器。
若输入文件扩展名为raw, y4m或avs,x264会使用相应demuxer来读取文件。标准输入使用raw demuxer。其它扩展名,x264会依次尝试使用ffms,lavf来读取,无法读取则失败。
‘lavf’和’ffms’选项要求x264在编译时包含了相应的库。两者之一被使用时,且输出非raw,则x264会提取使用输入文件的时间码。这使x264能有效得知VFR。其它选项可通过–fps来设定恒定帧率,或用–tcfile-in来设定可变帧率。

指定视频源的色度与亮度level范围。设为TV则使用有限范围,设为PC则使用全范围。
注意:若range与input-range的值不同,则编码时将进行范围转换。
推荐值:默认,除非你知道片源的level是TV还是PC。

仅在使用ffms –demuxer时有效的可选项。指定ffms读取输入视频所对应的索引文件,对之后的编码可用,免去重复索引。通常不需要,索引相对于编码过程来说,并不慢。
推荐值: 默认,除非你非要节省一分钟的索引时间。

推荐值: 使用resize滤镜和编码可变输入时,需要使用。

指定视频帧率,可以是浮点数(29.970),或是分数(),或整数() 值。x264能从输入流的头信息里检测到帧率(仅限于y4m, avs, ffms, lavf),若没有,在使用25。使用此项会自动开启–force-cfr。
当使用raw YUV输入,且使用–bitrate模式,则必须用此选项或–tcfile-in指定帧率。否则x264不会达到目标码率。

指定编码的起始帧,允许从源文件的某一时间点开始编码。

指定最大编码帧数,允许编码能在源文件结束前停止。

修改x264的参数以更好地兼容所有蓝光播放器。只有当视频需要在硬件蓝光播放机上播放时,才需启用本设置。
此设置对参数做出以下修改:
将–weightp上限设为1(若不大于1,则不更改;若大于1,则降为1)
此设置还开启了一些x264的内部变更,以便生成的视频更利于硬件播放器的播放。例如:
推荐值:若用于蓝光硬件播放机,则开启本设置。

不以视频内容来优化header,以保证能被附加(append)到分段的编码视频尾部。并保证当视频的各段采用完全相同的参数编码时,各段的header完全一致。

显示每一编码帧的统计信息。

关闭编码过程中的进度显示。

开启安静模式,静默x264的状态消息。

在编码结束时,报告PSNR 值,略微减慢速度。

在编码结束时,报告SSIM 值,略微减慢速度。

默认: auto (基于帧编码的线程:1.5 * 逻辑处理器数,舍弃小数点;基于切片(slice-based)编码的线程:1 * 逻辑处理器数)
开启并行编码,利用多核系统的一个以上的线程来增加速度。多线程造成的质量损失可忽略不计,除非使用非常高的线程数(如大于16)。速度提升略低于线性,直至线程数> 一线程/垂直40像素,再往上速度提升大幅缩减。
x264目前内部限制最高线程数为128,现实中不会使用到这么高。

开启基于基于切片(slice-based)的线程,该方法在压缩和效率上皆略输于默认方法,但没有编码延时。
推荐值: 默认(off),除非需要编码实时流媒体,或是低延时很重要时。

使用与编码不同的线程来解码输入视频。

小心:开启时,输出质量一般略逊于CPU模式的质量。驱动程序有bug时,编码速度有可能低于纯CPU x264,甚至可能导致系统崩溃。

在运行前,x264必须编译其针对你的设备的OpenCL内核,为避免在每次运行时都编译一次,x264会将编译完成的内核二进制码缓存于名为x264_lookahead.clbin的文件。
指定编译完的OpenCL内核缓存的路径以更改此路径。

x264将使用第一个支持OpenCL的GPU设备。大多现代的独立GPU或AMD的集成GPU都能用,Intel的集成GPU(IvyBridge及更早产品)不支持所需的特性。
当你的系统存在多余一个支持OpenCL的设备时,允许通过设备序号来指定运行lookahead的设备。

忽略自动CPU检测。适用于debug和纠错。

禁用所有CPU优化。适用于debug和纠错。

将重构的YUV帧放入指定文件内。主要用于debug,通常不用。

推荐值: 默认,若编码蓝光,则需设定此选项。

使用ffms2或lavf demuxers时,时间码复制于输入文件(假设输出不是raw)。此选项禁止该方式,转而强制x264自己生成时间码。使用此选项时,最好同时设定–fps。

指定一个时间码文件,用于解释输入视频的帧率。时间码文件格式有两种:v1和v2。解释详见此mkvmerge文档

根据输入的时间戳,输出一个时间码文件(v2格式)。用于VFR输入视频且想丢弃时间码时。文件的格式,参见tcfile-in

分子是秒数(seconds),分母是嘀嗒数(tick)。意思是一个滴答耗时多少秒。
若是分数,则会相应设置分子和分母。
若是整数,且输入时间码文件由tcfile-in设定,则会使用该值作为分子,然后相应生成分母。
若是整数,且未设置时间码文件,则会使用该值作为分母,并由输入视频生成”每帧嘀嗒数”。

小功能,仅用于FLV和MP4容器,以绕过某些有问题(认为DTS都是正的)的解码器。对于此改变,谨慎使用.
注:DTS指的是解码时间戳(Decode TimeStamp)。每一帧都分配了一个DTS,对应其在流媒体“编码顺序”中的位置,不同于由显示时间戳(Presentation TimeStamp)指定的“显示顺序”。各帧在视频流中保存的顺序与显示的顺序不同(由于诸如B帧压缩之类的压缩技术),造成某些帧需要后续显示的帧的数据。

x264滤镜系统用于在编码前处理输入视频。可以一定次序使用多个滤镜。

可以“连接”随意多个滤镜。

对于yv12i, i420i, nv12i格式的输入视频,在高度上切除像素个数必须为4的整数倍。
对于yv12p, i420p, nv12p格式的输入视频,或以上未列出的其它隔行视频作为输入视频,在高度上切除像素个数必须为2的整数倍。

端午节的素材Png免扣。节日 banner 及海报都可以用的上的素材,元素非常之丰富,比如端午节艺术字体、龙舟、粽子、祥云、海以及中国风纹理,都可以分解后,自己自由搭配。更多PNG素材到专业的免扣搜图114 (SOTU114) 下载素材。

我要回帖

更多关于 justswap去中心化交易所 的文章

 

随机推荐