便携式X荧光测土壤中的重金属能达到什么样的检出限?

天瑞X荧光土壤重金属分析仪是天瑞仪器结合20年X荧光研发经验,集中了光电子、微电子、半导体和计算机等多项技术,研制出具有自主知识产权的,一代检测土壤重金属的XRF产品。通过系列不同产品,可以满足各类客户需求,还能用于车载式检测。

天瑞X荧光土壤重金属分析仪应用于土壤污染物进行原位测试与修复分析中,应用于各类地质中,检测样品包括矿渣、岩石、泥土、泥浆,特别关注在国家标准中所关注的15大重金属元素,可以根据客户要求针对特殊元素进行定制。样品形态可以为固体、液体、粉末等。

天瑞X荧光土壤重金属分析仪环保土壤行业应用领域

设备可以有效的对检测汞、镉、铅、砷、铜、锌、镍、钴、钒等引起土壤及固废污染:汞主要来自厂矿排放的含汞废水,能在土壤中存在;镉、铅污染主要来自冶炼排放和汽车废气沉降,如公路两侧的土壤易受铅的污染;土壤的砷污染主要来自 用作杀虫剂、杀菌剂、 杀鼠剂、除草剂和硫化矿产的开采、选矿、冶炼。

超高精度分析,微量金属元素成分尽在掌握。可以对各类居住用地、商业用地、工业用地等二级三级用地进行 的土壤重金属分析普查

l  土壤重金属污染样筛查

通过自动进样器对 污染样器行自动分析。可以在很短的时间内圈点重点土壤污染区,进行重点治理。快速分别污染区与非污染区。整体提高了筛查生产效率,极大的减少化验和运输费用。

l  高性能配件提升效果

   选用自制新研制的数字多道及*超高分辨率探测器,提高设备的稳定性及元素之间的相互干扰,并提高了元素的检出限。

SEE 100属于江苏天瑞仪器股份有限公司自主研发的产品,设备采用了能量色散X射线荧光光谱技术实现土壤中微量金属有害元素的快速检测,设备采用了的探测器和激发源等硬件配置。SEE 100荧光光谱仪,能够快速、地分析土壤中金属元素;K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pb、As、Ga、Rb、Y、Ba、Sr、Br、Th、Zr、Cd、Hg等元素的检出限和定量限满足HJ 780-2015环境保护标准要求。

产品名称:土壤重金属分析仪

测量元素范围:从硫(S)到铀(U)
元素含量分析范围: ppm—99.99%(不同元素,分析范围不同) 
同时分析元素:一次性可测30种以上元素 
探测器能量分辨率为:低可达125eV
测量对象状态:粉末、固体、液体

测量元素范围:从硫(S)到铀(U)
元素含量分析范围: ppm—99.99%(不同元素,分析范围不同) 
同时分析元素:一次性可测30种以上元素 
探测器能量分辨率为:低可达125eV

准直器与滤光片系统:三种或以上的自动滤光片切换系统

1、具备仪器自动保护功能,防止仪器误操作导致辐射泄漏及仪器损坏。

2、设备安全保护锁,特殊情况下通过安全保护锁操作人员安全。

3、三维迷宫式设计,防止辐射泄漏。

4、X射线管全包围式设计,提高仪器安全性能。

5、射线防护优于国标《X射线衍射仪和荧光分析仪卫生防护标准GBZ115-2002》。

原子发射光谱(ICP/AES)理论知识(11)——定量分析 光谱定量分析 光谱定量分析的基本关系式 进行光谱定量分析时,是根据被测试样光谱中欲测元素的谱线强度来确定元素浓度的。 元素的谱线强度I与该元素在试样中浓度C的关系为 I=acb 或 lgI=blgc+ lga 光谱定量分析的基本关系式 由于试样的蒸发、激发条件,以及试样组成、形态等的任何变化,均会使参数a发生变化,都会直接影响谱线强度。这种变化,特别是激发温度的变化是很难控制的。因此,通常不采用测量谱线绝对强度的方法来进行光谱定量分析,而是采用测量谱线相对强度的方法。这就是盖拉赫于1925年首先提出来的“内标法”。 内标法光谱定量分析的原理 一、 内标法原理 在待测元素的光谱中选一条谱线作为分析线(或称杂质线),另在基体元素(或定量加入的其它元素)的光谱中选一条谱线作为内标线(或称比较线),这两条谱线组成分析线对。分析线与内标线的绝对强度的......

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分&

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。 原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种

  AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。  AAS(原子吸收光谱)  基于气态的基态原子外层电子对紫外光

    发射光谱  物体发光直接产生的光谱叫做发射光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光。稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子光谱。观察气体的原子光谱,可以使用光谱管,它是一支

异:原子荧光法是利用基态原子吸收辐射至高能态,再产生的荧光来判断元素组成,原子吸收法是利用原子吸收特定频率的光辐射判断元素组成。同:都是利用原子的光谱判断。原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不

  材料的逆向分析是现行材料研发中的重要的手段,也是实现材料研发中的最经济、最有效的的研发手段。如何实现材料的逆向分析,从认识材料的分析仪器着手。  成分分析简介  成分分析技术主要用于对未知物、未知成分等进行分析,通过成分分析技术可以快速确定目标样品中的各种组成成分是什么,帮助您对样品进行定性定量

成分分析:  成分分析按照分析对象和要求可以分为 微量样品分析 和 痕量成分分析 两种类型。 按照分析的目的不同,又分为体相元素成分分析、表面成分分析和微区成分分析等方法。  体相元素成分分析是指体相元素组成及其杂质成分的分析,其方法包括原子吸收、原子发射ICP、质谱以及X射线荧光与X射线衍射分析方

 AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。  “光谱三兄弟”简介  AAS(原子吸收光谱):  基于气态的基

原子吸收光谱法的原理:每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波  原子吸收光谱原理图 长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中

  引言原子光谱分析技术历经数十年发展,已经形成利用原子发射、原子吸收、原子荧光等不同光谱特性进行有效化学分析的光谱分析仪器系列。纵观原子光谱分析仪器近几年的发展,一方面,设计与制造技术日臻完善、质量水平日趋稳定的“综合大系统”被全球各领域数以万计的实验室购置使用,成为微量与痕量元素分析的重要装备。

原子吸收光谱分析仪器具有灵敏度高,可达到10-9 ~ 10-17 克/升;重复性和选择性好、操作比较简便、快速、结果准确、可靠等优点;检测时样品用量少,在几—几十微升之间,测量范围广,几乎能用来分析所有的金属元素和类金属元素元件。原子吸收光谱分析仪器可应用于冶金、化工、地质、农业

原子吸收光谱是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法.原子发射光谱是基于原子的发射现象,而原子吸收光谱则是基于原子的吸收现象.二者同属于光学分析方法.原子吸收法的选择性高,干扰较少且易于克服.由于原于的吸收线比发射线的数目少得多,这样谱线重叠 的几率小得多.而且空心阴极灯一

目前,重金属污染是影响我国农作物的主要因素之一,我国受镉、铅汞等重金属污染的耕地面积近2000万公顷,约占总耕地面积的1/5.因此对重金属的快速、准确的食品检测是我们能够保障食品安全的一项基本工作。现有的重金属分析方法主要包括原子吸收光谱法(火焰与石墨炉)、原子荧光光谱法、TCP发射光谱法。1、基本

AAS顾名思义,就是原子吸收光谱法,该法具有检出限低、准确度高、选择性好(即干扰少)、分析速度快等优点。ICP原子发射光谱仪,是根据试样中被测元素的原子或离子,对各元素进行定性分析和定量分析的仪器,该仪器具有样品用量少,应用范围广且快速,灵敏和选择性好等特点。   ICP是否会完

  光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?  原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测主要的部分之一,光源的作用

   光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?   原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测主要的部分之一,光源

  光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?  原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测主要的部分之一,光源的作用

  分析测试百科网讯 2018年1月17日,经中国仪器仪表学会授权,中国仪器仪表学会分析仪器分会牵头组织的首期“全国学会专业技术人员专业水平评价,分析仪器专业领域高级工程师级别评定” 培训班在北京市工业技师学院举办。共30位仪器生产企业、实验室以及研究院、所的工程师参加培训。本次的培训时间为2018

摘要:土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性

  重金属水污染是指相对密度在4.5以上的金属元素及其化合物在水中的浓度异常使水质下降或恶化。相对密度在4.5以上的重金属,有铜、铅、锌、镍、铬、镉、汞和非金属砷等。检测水中重金属的方法有火焰原子吸收分光光度法、石墨炉原子吸收分光光度法、原子荧光光谱法、电感耦合等离子体发射光谱法、电感耦合等离子体质

重金属检测是常规监测项目之一。采用重金属检测方法,能快速有效地对重金属检测和评价。本文介绍了几种常用的重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱等,接下来我们就一起学习一下吧。 重金属不但会通过径流和淋洗作用污染地表水,还会通过食

  土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的

  土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的

  光谱仪的原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要的有5种:  1.共振荧光  处于基态或低能态的原子,吸收光源中的共振辐射跃迁到高能态,处于高能态的原子在返回基态或相同低能态的过程中,发射

       原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行

重金属检测是常规监测项目之一。采用重金属检测方法,能快速有效地对重金属检测和评价。本文介绍了几种常用的重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱等。  重金属不但会通过径流和淋洗作用污染地表水,还会通过食物链的方式进入人体内,对于重金

  原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 它是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。  虽然原子荧光法有很多优点,

DB13∕T 农田土壤中镉、砷、铅、铬、铜、镍、锌的快速检测 能量色散型X射线荧光光谱法
本文件规定了能量色散型X射线荧光光谱法检测农田土壤中重金属元素的的术语和定义、方法原理、试剂和材料、仪器和设备、样品、分析步骤、试验数据处理、检出限和定量限、精密度、质量控制、注意事项。
本文件适用于农田土壤中镉、砷、铅、铬、铜、镍、锌元素的快速检测。

我要回帖

更多关于 土壤被重金属污染的原因 的文章

 

随机推荐