刀身换实心球教学视频金属材料用人最大的力气可以砍伤别人吗

发个我们专业学的关于金属材料的一些东西~有爱的可以看下~_刀吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:283,802贴子:
发个我们专业学的关于金属材料的一些东西~有爱的可以看下~收藏
&&&& 金属材料的概念金属材料是以金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代种类繁多的金属材料已成为人类社会发展的重要物质基础。由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。种类金属材料通常分为黑色金属、有色金属和特种金属材料。①&&&& 黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②&&&& 有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③&&&& 特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。①铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。②变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。③喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯
京东“游戏续费“平台!各类火爆游戏点卡销售!安全,方便,迅速,可靠!京东,掀起网购热潮,惊喜不断,天天有低价!轻松购物,优惠到家!
&&&& 金属材料的发展人类文明的发展和社会的进步同金属材料的关系十分密切。继石器时代之后,出现铜器时代,随后是铁器时代(见冶金史)。19世纪以来,随着科学技术的发展,铝、钛及其他稀有金属材料相继获得工业生产和应用;钢铁生产得到进一步发展。20世纪50年代以来,新型金属材料的发展,更是方兴未艾,难以估量。1982年世界钢产量达到5.7亿吨,铝约1400万吨,铜约900万吨,钛则已形成11万吨的生产能力。金属材料除了作为受力结构使用之外,有些还具有耐高温、耐低温、耐腐蚀以及其他如磁性、弹性、电学等特殊功能,是工农业发展和人类生活的物质基础。 材料、信息、能源被称为现代科学技术的三大支柱,而材料又是一切技术发展的物质基础。任何新的技术成就,莫不仰赖于各种相互匹配的新型材料,而新型材料中金属材料是其重要的一个方面,例如航空、航天工业所需的高温合金,核工业的核燃料、核反应堆材料,现代信息技术使用的硅、锗等半导体材料、新型磁性材料等。由于这些新技术的发展又推动研制新的材料品种和发展新的冶金生产工艺和装备。由此可见,金属材料的开发和研究是科学技术的一个基本领域。金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。金属材料-分类及应用金属材料品种繁多。随着科学技术的发展不仅新的金属材料品种不断出现,而且传统的金属材料,如钢铁、铜、铝等合金材料品种也日益增加。(1)按元素分为:钢铁材料,如铁、钢、碳素钢、合金钢等;有色金属材料,如铝、铜、镍、贵金属材料等。(2)按主要性能和用途分为:金属结构材料和金属功能材料,其中有要求力学性能(强度、硬度、韧性等)为主的材料,如结构材料、工具材料等;有要求物理性能(磁性、导电性、弹性等)的材料,如精密合金、半导体材料、超导材料等;要求物理化学性能的材料,如耐蚀材料、金属催化剂、消气材料等。按加工制造工艺可分为:铸造合金、变形(可进行金属塑性加工合金和粉末冶金材料。(3)按材料提供使用的形态可分为:板材、丝材、棒材、带材和多孔材料、纤维强化复合材料等。此外,还可按金属的组织状态分为结晶态金属材料和非晶态金属材料等。种类:金属材料通常分为黑色金属、有色金属和特种金属材料。 ①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。钢:量小于2%并含有某些其他元素的铁碳合金。钢具有强度高、韧性好、易于加工成形、原材料资源丰富、冶炼容易、价格便宜等优点,是应用最广泛的一种金属材料。简史中国在春秋末期(前476年以前)已出现人工锻炼的钢。到东汉时期已掌握了炒钢技术。钢的工业生产最早采用坩埚法,产量低、成本高,难于满足工业发展的需要。1856年,英国的H.贝塞麦发明了转炉炼钢法,年,英国的K.W.西门子和法国的P.E.马丁发明了平炉炼钢法。1899年,法国的P.L.T.埃鲁发明了电弧炉炼钢法。20世纪50年代后,先后出现了真空除气、电渣重熔、钢包精炼、真空熔炼等精炼技术,使电炉钢的品质更好,各种新钢种也相继出现。钢是现代社会生产和生活所必需的基本材料,而钢和钢材的产量、品种、质量已作为衡量一个国家工业、农业、国防和科学技术现代化的一个重要标志钢的组织和特性铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,912℃以上称α铁,1394℃以上称δ铁);另一是面心立方结构(存在于912~1394℃之间,称γ铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(Fe3C),其硬度高、脆性大。碳溶于α铁中形成的固溶体称铁素体;溶于γ铁中形成的固溶体称奥氏体,其最大溶解度为2.11%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。
铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成在碳素钢基础上加入各种合金元素,可制成各种合金钢。加入不同的合金元素,可使合金钢具有耐热、耐腐蚀、耐磨、高强度等特殊性能。合金元素按其与碳的亲和力不同分为碳化物形成元素和非碳化物形成元素;按其对钢的组织转变影响不同分为扩大奥氏体区元素和缩小奥氏体区元素。合金元素还影响铁碳相图中特征点位置、相变、碳的扩散及钢的淬透性等。除加入合金元素外,通过热处理工艺,也可改变钢的组织结构和性能,如提高钢的强度、增加韧性、获得良好的加工工艺性能等分类钢的分类方法有多种。按冶炼方法分为平炉钢、转炉钢和电炉钢。平炉炼钢脱除硫、磷和氧的条件比转炉好,故平炉钢的品质优于转炉钢。转炉钢将空气直接吹入钢液中,以使碳、锰、硅等元素被氧化脱除。该法冶炼速度快、能耗少、成本低,所炼出的钢可满足工业上的一般应用。但转炉钢含氧、氮量高,品质较差,不能适应重要产品的要求。电弧炉炼钢脱除硫、磷和氧的条件好,合金成分调整容易,冶炼速度比平炉炼钢快,适于生产各种优质钢。按化学成分分为碳素钢和合金钢。按品质分为普通钢(磷≤0.045%、硫≤0.055%)、优质钢(磷、硫≤0.035%)和高级优质钢(磷、硫≤0.03%)。按用途分为结构钢,用以制造各种承力结构件和机械零件;工具钢,用以制造各种切削刀具、量具、模具和其他耐磨工具;特殊钢,包括耐热钢、耐磨钢、不锈钢、电工钢、低温钢、易切削钢等。按金相组织分为亚共析钢(铁素体加珠光体组织)、共析钢(珠光体组织)、过共析钢(碳化物加珠光体组织),或分为珠光体钢、贝氏体钢、马氏体钢、奥氏体钢和铁素体钢等。按供货方式又分为轧钢、锻钢和铸钢钢的牌号实际应用中,各种类型的钢分别以各自的牌号来表示。钢的牌号命名,各国均有自己的规则和方法。中国国家标准采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法。通常,用汉语拼音第一个字母表示钢的名称、用途、特性和工艺方法,如氧气转炉钢用Y,沸腾钢用F。普通碳素钢分甲、乙、特3种质量,分别用A、B、C表示,并以数字表示其含碳量;如AY2F、AY3F表示甲类氧气转炉沸腾钢,后者比前者含碳量高。优质碳素结构钢用数字或数字加元素符号表示,高级优质钢在数字后加A,数字表示其平均含碳量(以千分之几计);如20A表示平均含碳量0.2%的高级优质钢。碳素工具钢用字母T、数字(表示千分之几计的平均含碳量)和高级优质符号A表示,如T9A。合金钢用元素符号和阿拉伯数字表示,其含碳量放在最前边。合金结构钢的含碳量以万分之几计,不锈钢、耐热钢等以千分之几计。合金钢中的合金元素含量用元素符号后边的数字表示,含量小于1.5%的不予标出;如30CrMnSi表示平均含碳量为0.3%,合金元素含量均小于1.5%的合金结构钢,铸钢用汉语拼音符号ZG和数字表示,如ZG45,表示含碳量为0.45%的铸钢。不锈钢:耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。又称不锈耐酸钢。实际应用中,常将耐弱腐蚀介质腐蚀的钢称为不锈钢,而将耐化学介质腐蚀的钢称为耐酸钢。由于两者在化学成分上的差异,前者不一定耐化学介质腐蚀,而后者则一般均具有不锈性。不锈钢的耐蚀性取决于钢中所含的合金元素。铬是使不锈钢获得耐蚀性的基本元素,当钢中含铬量达到12%左右时,铬与腐蚀介质中的氧作用,在钢表面形成一层很薄的氧化膜(自钝化膜),可阻止钢的基体进一步腐蚀。除铬外,常用的合金元素还有镍、钼、钛、铌、铜、氮等,以满足各种用途对不锈钢组织和性能的要求。不锈钢通常按基体组织分为:①铁素体不锈钢。含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高耐氯化物应力腐蚀性能优于其他种类不锈钢。②奥氏体不锈钢。含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。③奥氏体;铁素体双相不锈钢。兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。④马氏体不锈钢。强度高,但塑性和可焊性较差
碳素钢:含碳量小于1.35%,除铁、碳和限量以内的硅、锰、磷、硫等杂质外,不含其他合金元素的钢。碳素钢的性能主要取决于含碳量。含碳量增加,钢的强度、硬度升高,塑性、韧性和可焊性降低。与其他钢类相比,碳素钢使用最早,成本低,性能范围宽,用量最大。通常按含碳量分为低碳钢(碳含量为0.04%~0.25%)、中碳钢(碳含量为0.25%~0.6%)、高碳钢(碳含量为0.6%~1.35%)。按质量分为普通碳素钢,其有害杂质磷、硫含量均小于0.05%,包括甲类钢(A类钢,保证力学性能)、乙类钢(B类钢,保证化学成分)和特类钢(C类钢,保证力学性能和化学成分);优质碳素钢,有害杂质磷、硫含量均小于0.04%;高级优质碳素钢,有害杂质磷、硫含量小于0.03%。按用途又分为碳素结构钢和碳素工具钢,前者主要用于制造各种结构件和机器零件,一般属低碳钢和中碳钢;后者用于制造刀具、量具、模具等,一般属高碳钢。合金钢:在普通碳素钢基础上添加适量的一种或多种合金元素而构成的铁碳合金。根据添加元素的不同,并采取适当的加工工艺,可获得高强度、高韧性、耐磨、耐腐蚀、耐低温、耐高温、无磁性等特殊性能。合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、铜、硼、稀土等。其中钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和用途又分为合金结构钢、不锈钢、耐酸钢、耐磨钢、耐热钢、合金工具钢、滚动轴承钢、合金弹簧钢和特殊性能钢(如软磁钢、永磁钢、无磁钢)等。工具钢:用于制造切削工具、量具、模具及抗高温软化弹簧、各类轴承和一些耐磨零件等的钢。通常分为碳素工具钢、合金工具钢和高速工具钢(见高速钢)。①碳素工具钢。简称碳工钢。为一种优质高碳钢(含碳0.65%~1.35%)。其特点是冷、热加工性能好,淬火后硬度为HRC66~67,耐磨性好,价格低廉,用途广,使用量约占全部工具钢的一半。但其淬透性、耐热性较差,一般只限制在200℃以下使用。②合金工具钢。在碳工钢中加入合金元素构成。合金元素的作用是提高钢的强度、硬度、韧性、耐热性和耐磨性,以满足不同的使用要求。合金工具钢按用途分为量具刃具钢、耐冲击工具钢和合金模具钢。后者包括冷作模具钢、热作模具钢和塑料模具钢等(见模具钢)。量具刃具钢含碳量较高,含有少量的铬、钨、钒、硅和锰等合金元素,其淬透性好(淬火时形成深厚的淬硬层),耐磨性和热稳定性显著高于碳工钢,并具有一定的强度和冲击韧性。耐冲击工具钢含碳量0.35%~0.65%,主要合金元素是铬、钨和硅,热处理后的冲击韧性、疲劳强度和耐磨性均较高,故适于制造受冲击载荷大的工具。模具钢:用于制造各种类型模具的钢。按成分分为碳素钢和合金钢。按用途又分为:①冷作模具钢。用于制造冷冲模、冷挤压模、冷拉丝模、压弯模、滚丝模、冷成形模、搓丝板等。其硬度高,耐磨性和韧性好。常采用高碳工具钢,当模具尺寸大时,也采用高碳低合金钢。②热作模具钢。用于制造热锻模、热挤压模、精密铸造和金属压铸的铸型。由于模具都是在较高温度下工作,因此多采用合金钢,其高温性能、韧性和抗热疲劳性能好,等向性好。③塑料模具钢。用于制造塑料成型模。其工艺性能好,如热处理变形小,加工性、研磨性、抛光性能好,光洁度高,图案花纹刻蚀性好等。根据使用条件可采用碳素钢或合金钢。④基体钢。其化学成分相当于高速工具钢淬火后基体组织的化学成分,故而得名。用于制造工作温度在600~680℃的热模具和耐磨性要求高的冷模具。⑤无磁模具钢。用于制造磁性材料成型的模具。其硬度高、耐磨性好,在磁场中使用不会被磁化。高速钢:硬度高,耐磨性、耐热性好,并有适当的韧性的钢。高速工具钢的简称。主要用于制造高速切削工具,也可用于制造高温轴承、模具及一些要求高硬度、耐磨性好的机械零件等。高速钢的碳含量(0.70%~1.65%)和合金元素总含量(10%~25%)均较高。主要合金元素是钨、钼,此外还有铬、钒、钴、硅、铝、氮等。碳和合金元素以碳化物形态存在于钢组织中。随着含碳量的增加,钢的硬度增加。当碳含量达到平衡值(钢中的合金元素形成相应碳化物所需碳量)时,钢的淬火、回火硬度值最高。高速钢按用途分为普通高速钢和特种高速钢两种。前者硬度可达HRC63以上,综合性能好,广泛用于制造各类切削刀具。后者又分为高钒高速钢、粉末高速钢、含钴高速钢和超硬高速钢,主要用于制造难切削加工等特殊用途刀具。弹簧钢:用于制造各类弹簧和弹性元件的钢。有高的弹性极限和疲劳极限,足够的冲击韧性和塑性、良好的抗应力松弛性能以及一定的冷热成型性能。按化学成分分为碳素弹簧钢和合金弹簧钢。前者含碳0.6%~0.8%,还含有少量的锰及其他合金元素,其强度高,加工性能好,但淬透性不高,仅适于制作小弹簧或性能要求不高的大弹簧。后者含碳0.4%~0.7%,合金元素含量不超过5%,其淬透性好(淬火时淬硬层深厚),综合力学性能优良,可制作截面尺寸大、性能要求高、工作温度高的弹簧。按生产方法又分为:①热轧弹簧钢。可制造截面尺寸较大的弹簧,如各种车辆的减振弹簧等。②冷轧弹簧钢。有冷轧钢带和冷拉钢丝,用以制造小型高精度弹簧,如钟表发条、仪表中的簧片等。其中冷拉钢丝又分为铅浴等温淬火钢丝、油淬火回火钢丝和退火态钢丝3种。
&&&& 金属材料的性能金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。机械性能&&&& (一)应力的概念,物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。&&&& (二)机械性能,金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:&&&& 1.强度&&&& 这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:&&&& (1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPaσb=Pb/Fo式中:Pb?C至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo?C拉伸试样原来的横截面积。&&&& (2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs/σb)要小,以提高其安全可靠性,不过此时材料的利用率也较低了。&&&& (3)弹性极限:材料在外力作用下将产生变形,但是去除外力后仍能恢复原状的能力称为弹性。金属材料能保持弹性变形的最大应力即为弹性极限,相应于拉伸试验曲线图中的e点,以σe表示,单位为兆帕(MPa):σe=Pe/Fo式中Pe为保持弹性时的最大外力(或者说材料最大弹性变形时的载荷)。&&&& (4)弹性模数:这是材料在弹性极限范围内的应力σ与应变δ(与应力相对应的单位变形量)之比,用E表示,单位兆帕(MPa):E=σ/δ=tgα式中α为拉伸试验曲线上o-e线与水平轴o-x的夹角。弹性模数是反映金属材料刚性的指标(金属材料受力时抵抗弹性变形的能力称为刚性)。&&&& 2.塑性,&&&& 金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)延伸率δ=[(L1-L0)/L0]x100%,这是拉伸试验时试样拉断后将试样断口对合起来后的标距长度L1与试样原始标距长度L0之差(增长量)与L0之比。在实际试验时,同一材料但是不同规格(直径、截面形状-例如方形、圆形、矩形以及标距长度)的拉伸试样测得的延伸率会有不同,因此一般需要特别加注,例如最常用的圆截面试样,其初始标距长度为试样直径5倍时测得的延伸率表示为δ5,而初始标距长度为试样直径10倍时测得的延伸率则表示为δ10。断面收缩率ψ=[(F0-F1)/F0]x100%,这是拉伸试验时试样拉断后原横截面积F0与断口细颈处最小截面积F1之差(断面缩减量)与F0之比。实用中对于最常用的圆截面试样通常可通过直径测量进行计算:ψ=[1-(D1/D0)2]x100%,式中:D0-试样原直径;D1-试样拉断后断口细颈处最小直径。δ与ψ值越大,表明材料的塑性越好。3.硬度,金属材料抵抗其他更硬物体压入表面的能力称为硬度,或者说是材料对局部塑性变形的抵抗能力。因此,硬度与强度有着一定的关系。根据硬度的测定方法,主要可以分为:
&&&& (1)布氏硬度(代号HB),用一定直径D的淬硬钢球在规定负荷P的作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下表面积为F的压痕,以试件的单位表面积上能承受负荷的大小表示该试件的硬度:HB=P/F。在实际应用中,通常直接测量压坑的直径,并根据负荷P和钢球直径D从布氏硬度数值表上查出布氏硬度值(显然,压坑直径越大,硬度越低,表示的布氏硬度值越小)。布氏硬度与材料的抗拉强度之间存在一定关系:σb≈KHB,K为系数,例如对于低碳钢有K≈0.36,对于高碳钢有K≈0.34,对于调质合金钢有K≈0.325,…等等。&&&& (2)洛氏硬度(HR)用有一定顶角(例如120°)的金刚石圆锥体压头或一定直径D的淬硬钢球,在一定负荷P作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下某个深度的压痕。由洛氏硬度机自动测量压坑深度并以硬度值读数显示(显然,压坑越深,硬度越低,表示的洛氏硬度值越小)。根据压头与负荷的不同,洛氏硬度还分为HRA、HRB、HRC三种,其中以HRC为最常用。洛氏硬度HRC与布氏硬度HB之间有如下换算关系:HRC≈0.1HB。除了最常用的洛氏硬度HRC与布氏硬度HB之外,还有维氏硬度(HV)、肖氏硬度(HS)、显微硬度以及里氏硬度(HL)。这里特别要说明一下关于里氏硬度,这是目前最新颖的硬度表征方法,利用里氏硬度计进行测量,其检测原理是:里氏硬度计的冲击装置将冲头从固定位置释放,冲头快速冲击在试件表面上,通过线圈的电磁感应测量冲头距离试件表面1毫米处的冲击速度与反弹速度(感应为冲击电压和反弹电压),里氏硬度值即以冲头反弹速度和冲击速度之比来表示:HL=(Vr/Vi)?1000式中:HL-里氏硬度值;Vr-冲头反弹速度;Vi-冲头冲击速度(注:实际应用装置中是以冲击装置中的闭合线圈感应的冲击电压和反弹电压代表冲击速度和反弹速度)。冲击装置的构造主要有内置弹簧(加载套管,不同型号的冲击装置有不同的冲击能量)、导管、释放按钮、内置线圈与骨架、支撑环以及冲头,冲头主要采用金刚石、碳化钨两种极高硬度的球形(不同型号的冲击装置其冲头直径有不同)。优点:里氏硬度计的主机接收到冲击装置获得的信号进行处理、计算,然后在屏幕上直接显示出里氏硬度值,便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值,同时可折算出材料的抗拉强度σb,还可以将测量结果储存、直接打印输出或传送给计算机作进一步的数据处理。&&&& 3.应用范围:&&&& 里氏硬度计是一种便携袖珍装置,可应用于各种金属材料、工件的表面硬度测量,特别是大型锻铸件的测量,其最大的特点是可以任意方向检测,免去了普通硬度计对工件大小、测量位置等的限制。&&&& 4.韧性&&&& 金属材料在冲击载荷作用下抵抗破坏的能力称为韧性。通常采用冲击试验,即用一定尺寸和形状的金属试样在规定类型的冲击试验机上承受冲击载荷而折断时,断口上单位横截面积上所消耗的冲击功表征材料的韧性:αk=Ak/F单位J/cm2或Kg•m/cm2,1Kg•m/cm2=9.8J/cm2αk称作金属材料的冲击韧性,Ak为冲击功,F为断口的原始截面积。5.疲劳强度极限金属材料在长期的反复应力作用或交变应力作用下(应力一般均小于屈服极限强度σs),未经显著变形就发生断裂的现象称为疲劳破坏或疲劳断裂,这是由于多种原因使得零件表面的局部造成大于σs甚至大于σb的应力(应力集中),使该局部发生塑性变形或微裂纹,随着反复交变应力作用次数的增加,使裂纹逐渐扩展加深(裂纹尖端处应力集中)导致该局部处承受应力的实际截面积减小,直至局部应力大于σb而产生断裂。在实际应用中,一般把试样在重复或交变应力(拉应力、压应力、弯曲或扭转应力等)作用下,在规定的周期数内(一般对钢取106~107次,对有色金属取108次)不发生断裂所能承受的最大应力作为疲劳强度极限,用σ-1表示,单位MPa。除了上述五种最常用的力学性能指标外,对一些要求特别严格的材料,例如航空航天以及核工业、电厂等使用的金属材料,还会要求下述一些力学性能指标:蠕变极限:在一定温度和恒定拉伸载荷下,材料随时间缓慢产生塑性变形的现象称为蠕变。通常采用高温拉伸蠕变试验,即在恒定温度和恒定拉伸载荷下,试样在规定时间内的蠕变伸长率(总伸长或残余伸长)或者在蠕变伸长速度相对恒定的阶段,蠕变速度不超过某规定值时的最大应力,作为蠕变极限,以表示,单位MPa,式中τ为试验持续时间,t为温度,δ为伸长率,σ为应力;或者以表示,V为蠕变速度。高温拉伸持久强度极限:试样在恒定温度和恒定拉伸载荷作用下,达到规定的持续时间而不断裂的最大应力,以表示,单位MPa,式中τ为持续时间,t为温度,σ为应力。金属缺口敏感性系数:以Kτ表示在持续时间相同(高温拉伸持久试验)时,有缺口的试样与无缺口的光滑试样的应力之比:式中τ为试验持续时间,为缺口试样的应力,为光滑试样的应力。
或者用:表示,即在相同的应力σ作用下,缺口试样持续时间与光滑试样持续时间之比。抗热性:在高温下材料对机械载荷的抗力。 化学性能&&&& 金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。 物理性能&&&& 金属的物理性能主要考虑:&&&& (1)密度(比重):ρ=P/V单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。&&&& (2)熔点:金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。(3)热膨胀性随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。在实际应用中还要考虑比容(材料受温度等外界影响时,单位重量的材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。&&&& (4)磁性能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。&&&& (5)电学性能主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。工艺性能&&&& 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:&&&& (1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。&&&& (2)可锻性:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。&&&& (3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。(4)可焊性:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。工艺性能金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:(1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。(2)可锻性:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。(3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。(4)可焊性:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。
后面还有人才培养之类的废话 就不发了
没看,太长了
适宜用来造枪的钢材:很多人认为做枪的钢材是卖不着神秘钢材,实际上那些私自做枪的人大多数都无法给零件做热处理,所以寿命较短,事实上,只要给予金属零件好的热处理和表面处理,枪的寿命可以与欧美或相差无几。枪管做枪管的钢材不需要整体很硬,只是额外要求韧性和耐热性以及耐腐蚀性(发射药内有硝酸成分),但要求内膛十分坚硬耐磨,所以需要做表面硬化处理,例如表面淬火后镀硬铬,化学热处理表面渗透。推荐:普通中碳钢,高强度结构钢,中碳不锈钢,弹簧钢。最好用钨钢。(要经锻造提高机械性能)击发组件击发组件要求有好的韧性和硬度以及耐磨性,如击针要求抗冲击性和抗变形能力。推荐:冷作模具钢轴销轴销也普遍要求耐磨性和抗变形能力,通常用和零件一样的材料,也可用耐磨的硼钢。弹簧枪上的弹簧要求较高,建议用65Mn这样的优质弹簧钢制造表面处理表面处理一来可使枪抗腐蚀能力增强,二来使枪美观,很多情况下武器表面是烤蓝,多用于早期枪械,也有不反光的磷化和镀乳白铬,也可镀硬铬
东研专业生产优质面刀 品质保证面刀工艺先进 制作精细 持久耐用
LZ冶金专业的???
金属材料工程
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或

我要回帖

更多关于 实心球教学视频 的文章

 

随机推荐