为什么阻抗50欧姆姆?


50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?今天我们就来聊一聊50欧姆的来龙去脉。
做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻找最佳方案。这种不断纠结的过程可以说贯穿整个项目的研发周期。50欧姆也是一个纠结来纠结去的折中。这个折中来自于哪里呢?我们一起看一下。射频电路设计一个永恒的话题就是功率和功耗。如何传输最大的功率?如何把功耗降到最小?无耗只存在于理想中,有耗才是现实。50
欧姆就是在最大功率和最低损耗的平衡中得到的一个值。
拿我们最常用的同轴电缆做个例子。看一下 50欧姆 是什么样的一个阻抗值?
上图是同轴线的示意图,有内导体和外导体组成,因为内导体和外导体共轴,所以称作同轴线。同轴线传输的主要模式是TEM模,高次模除了TEM模的倍频,还有空腔导致的TE、TM模。我们所用到的同轴线都是在TEM模式下工作的,其场分布如下图所示:电场从内导体外表面到外导体内表面,磁场环绕内导体,在长度方向上周期分布。
稳定的工作模式,超级宽的工作带宽,超级低的传输损耗,同轴线在发明之初就得到了广大射频工程师的喜爱。比它的老前辈双线不知好了多少倍。所以在1930年开始,射频工程师们就开始寻找一种最佳的同轴线缆——最高的功率和电压传输,最低的损耗。可是研究越深入,工程师们愈发现,这种最好似乎不可能实现。为什么呢?
首先,最大的功率容量对应的阻抗是30欧姆,而最大的电压对应的阻抗是60欧姆。这两者就差了很多大。如下图所示
更为重要的是,最小损耗对应的特征阻抗更高,是77欧姆。
这三者相差甚远。不信的话,你阻抗匹配试试,看看回波变化有多大?这和50欧姆也没什么关系啊。折中就在这里啦。工程师喜欢平均,最大功率阻抗和最低损耗阻抗的算术平均是53.5欧姆,是不是接近50啦?还有一个几何平均是48欧姆。就是说,48欧姆到53欧姆这个阻抗范围,射频工程师都是可以接受的,不会影响太多的功率容量和信号损失。因此呢,50欧姆这个值就诞生了。慢慢成为了射频设计的一个标准值。
这就是50欧姆的由来。当然在一些特定场合,75欧姆和30欧姆也会用到的。
定这个阻抗标准有什么好处呢?
除了上文所说到的功率和损耗的折中,更重要的是,50欧姆是射频器件的一个端口标准。一个射频系统由很多个射频模块组成,而我们在设计单个射频模块时,只要把端口设置成50欧姆,这样系统集成的时候,端口就很容易实现匹配,不至于驴头不对马嘴,单个模块天下无敌,合到一起烂到掉渣。
当然这也只是理想情况,实际电路设计中我们很难做到完全50欧姆。比如我们端口回波损耗有时候只能做到10dB。但是记住,这个10dB的回波,只是针对端口阻抗50欧姆来说的,换个阻抗,性能变化很大。这个50欧姆端口阻抗就是我们测试线口的阻抗,所以测试前,要进行校准,确保测试线口是50欧姆。
对于同轴线,有几个重要的参数公式需要牢记。
1,阻抗公式
其中,b是外导体半径,a是内导体半径。
对于空气同轴线,50欧姆对应的内外导体半径比是2.302. 这个值建议牢记心中,因为会经常用到。而75欧姆对应的内外导体半径比是3.5. 这个在滤波器设计中比较常用。
外导体越粗,阻抗越高,内导体越粗,阻抗越小。这个在糖葫芦低通里面特别明显,如下图所示,它的高低阻抗就是靠改变内导体的粗细来实现的。
2,截止频率公式
这个截止频率就是同轴线中工作的最低高次模频率。我们上文说过了,同轴线可以在很宽的频带内只传输TEM模,第一个高次模
TE11模的截止频率和内外半径成反比,如上文公式。对于一个特征阻抗为50欧姆的同轴传输线,D和d的关系就定下来了。很直观的可以看出来,同轴线的直径越大,截止频率越低。填充的介质介电常数越高,截止频率越低。这个在线缆、接头选择上尤为重要。通常线缆和接头的截止频率要低于这个理想的截止频率,通常为90%左右。
下图给出了常用射频接头和线缆的工作频率。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报。
2017-10-24 22:56 来源: 网优雇佣军
原标题:为什么是50欧?
为什么大多数工程师喜欢用50欧姆作为PCB的传输线阻抗(有时候这个值甚至就是PCB板的缺省值),为什么不是60或者是70欧姆呢?
从生产工艺的角度
对于宽度确定的走线,3个主要的因素会影响PCB走线的阻抗。
首先,是PCB走线近区场的EMI(电磁干扰)和这个走线距参考平面的高度是成一定的比例关系的,高度越低意味着辐射越小。
其次,串扰会随走线高度有显著的变化,把高度减少一半,串扰会减少到近四分之一。
最后,高度越低阻抗越小,不易受电容性负载影响。
根据主流的PCB加工制造工艺,用SIM900A计算得到如下结果
PCB单端阻抗主要是线宽,铜厚,介质厚度三个因素决定的。如上图,50Ω,这三个参数是5.5mil,1.4mil,3.5mil。这些参数对生产来说比较容易制造,阻抗再小,介质厚度得越小,介质厚度再小就会超出生产设备的制程能力。5-6mil也是现在一般PCB生产厂家都能生产的。线宽一点对于现在高密度高速PCB来说,设计工程师又得叫苦不迭了。所以50Ω在业界成为标准,也就不足为奇了。
从电气性能的角度
下面再从损耗的角度看看。在高频高速线路中有个趋肤效应,大家大学学过电子知识的都知道。业界己经证明50Ω对于趋肤效应来说,它的损耗是最小的。通常电缆的趋肤效应损耗L(以分贝做单位)跟总的趋肤效应电阻R(单位长度)除以特性阻抗Z0成正比。
总的趋肤效应电阻R是屏蔽层和中间导体电阻之和。屏蔽层的趋肤效应电阻在高频时,和它的直径d2成反比。同轴电缆内部导体的趋肤效应电阻在高频时,和他的直径d1成反比。总共的串联电阻R,因此和(1/d2+1/d1)成正比。综合这些因素,给定d2和相应的隔离材料的介电常数Er,可以计算出在趋肤效应损耗最小的情况下d2/d1的比值。
假定固态聚乙烯的介电常数为2.25,趋肤效应损耗最小时,d2/d1=3.5911得出特性阻抗正是50欧姆。
从历史的角度
鸟牌电子公司提供了一个最为流传的故事版本,来自于 Harmon Banning 的《电缆:关于 50 欧姆的来历可能有很多故事》。在微波应用的初期,二次世界大战期间,阻抗的选择完全依赖于使用的需要.对于大功率的处理,30欧姆和44欧姆常被使用。
另一方面,最低损耗的空气填充线的阻抗是93欧姆。在那些岁月里,对于很少用的更高频率,没有易弯曲的软电缆,仅仅是填充空气介质的刚性导管。半刚性电缆诞生于50年代早期,真正的微波软电缆出现是大约10年以后了。
随着技术的进步,需要给出阻抗标准,以便在经济性和方便性上取得平衡。在美国,50欧姆是一个折中的选择;为联合陆军和海军解决这些问题,一个名为JAN的组织成立了,就是后来的DESC,由MIL特别发展的。
欧洲选择了60欧姆。事实上,在美国最多使用的导管是由现有的标尺竿和水管连接成的,51.5欧姆是十分常见的。看到和用到50欧姆到51.5欧姆的适配器/转换器,感觉很奇怪的。
最终50欧姆胜出了,并且特别的导管被制造出来(也可能是装修工人略微改变了他们管子的直径)。不久以后,在象Hewlett-Packard 这样在业界占统治地位的公司的影响下,欧洲人也被迫改变了。
所以对于射频50Ω阻抗标准缘由是业界经过长期的实践统一下来的,从生产制造上,电气性能,历史因素上都是一个折中的选择。
来源丨网络,如有侵权请联系删除返回搜狐,查看更多
责任编辑:

我要回帖

更多关于 阻抗50欧姆 的文章

 

随机推荐