已知a的逆矩阵如何求a方阵A的n次方等于o且A不等于O,求出可逆的方阵表达式

第1篇:考研数学极限七种运算方法及适用情况

基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。

除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。

极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。

第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;

第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);

第三种是洛必达法则,适用于及型未定式,在使用的过程中需要注意一下几点:

1、洛必达法则必须结合等价无穷小使用;

2、使用一次整理一次;

3、其他类型未定式需要转化成及型才可以使用洛必达法则等;

第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;

第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;

第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;

第七种方法是适用于数列极限的单调有界*定理,难点在于如何确定*方向,一般单调有界*定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法*有界*,做差的办法*单调*。

以上,从大的框架结构上给出了极限一章极限定义和极限计算的常用方法,希望同学们对这一章有一个宏观的把握,但是具体的细节掌握还要待进一步细致的学习。在复习的过程中要多留心多总结把重要的方法记录下来,错题记录下来方便后续的自我检查。

第2篇:考研数学的极限计算的答题技巧

摘要:极限的计算可以说是考研数学中一个必出的考点,它以怎样的形式出现还会是很多研友们的困扰。

极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础*,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。

极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。

极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续*求极限等方法。

四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来*数列极限存在,并求递归数列的极限。

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、渐近线,(垂直、水平或斜渐近线);

3、多元函数积分学,二重极限的讨论计算难度较大,常考查*极限不存在。

下面我们重点讲一下数列极限的典型方法。求数列极限可以归纳为以下三种形式。

这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本*质及运算法则直接验*。

2、求具体数列的极限,可以参考以下几种方法:

a.利用单调有界必收敛准则求数列极限

首先,用数学归纳法或不等式的放缩法判断数列的单调*和有界*,进而确定极限存在*;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

b.利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

3、求n项和或项积数列的极限,主要有以下几种方法:

a.利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c.利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

d.利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e.求n项数列的积的极限

一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

第3篇:考研数学中极限中的极限知识指导

为什么会有单侧极限这种极限计算方法,是因为在x→∞,x→a包括x→+∞和x→-∞,x→a+和x→a-,而不同的趋近,极限趋近值也不相同,因此需要分别计算左右极限,根据极限的充要条件来判断极限是否存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?

第一:e∞,arctan∞,因为x趋近于+∞,e∞→+∞,arctan∞→π/2,x趋近于-∞,e∞→0,arctan∞→-π/2;第二:绝对值;第三:分段函数在分段点处的极限。有个这几条我们就可以在计算极限时知道什么情况下分左右极限计算,什么

第4篇:考研数学方阵幂的计算方法

考研数学中线*代数部分的分数占了整体的百分之二十二,是整个考研数学不可缺少的部分,其章节内容与高等数学和概率统计没有太多联系,其知识点具有细致*和整体*,前后章节联系比较密切。

线*代数中的矩阵部分是整个线代非常重要的部分,也是要求我们同学要掌握透彻的一个部分,而其中关于方阵幂的问题是老师上课时所重点强调的,方阵幂的计算是要求我们要掌握的。在授课过程中,每位教授这门课的老师都会跟同学们来总结有关方阵幂的计算,也都分了情况给大家展示了其各种类型的计算方法。

首先对于矩阵行或者列均成比例的矩阵,这种类

第5篇:考研数学之方阵幂的计算方法

考研数学中线*代数部分的分数占了整体的百分之二十二,是整个考研数学不可缺少的部分,其章节内容与高等数学和概率统计没有太多联系,其知识点具有细致*和整体*,前后章节联系比较密切。

线*代数中的矩阵部分是整个线代非常重要的部分,也是要求我们同学要掌握透彻的一个部分,而其中关于方阵幂的问题是跨考教育老师上课时所重点强调的,方阵幂的计算是要求我们要掌握的。在授课过程中,每位教授这门课的老师都会跟同学们来总结有关方阵幂的计算,也都分了情况给大家展示了其各种类型的计算方法。

首先对于矩阵行或者列均成比例的矩阵

第6篇:考研数学中线*代数计算方法

考研数学中线*代数部分的分数占了整体的百分之二十二,是整个考研数学不可缺少的部分,其章节内容与高等数学和概率统计没有太多联系,其知识点具有细致*和整体*,前后章节联系比较密切。

线*代数中的矩阵部分是整个线代非常重要的部分,也是要求我们同学要掌握透彻的一个部分,而其中关于方阵幂的问题是跨考教育老师上课时所重点强调的,方阵幂的计算是要求我们要掌握的。在授课过程中,每位教授这门课的老师都会跟同学们来总结有关方阵幂的计算,也都分了情况给大家展示了其各种类型的计算方法。

首先对于矩阵行或者列均成比例的矩阵

第7篇:极限的计算方法总结

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。下面为大家整理的是极限的计算方法总结,希望对大家有所帮助~

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须*拆分后极限依然存在,e的x次方-1或者(1+x)的a次方-1等价于ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是x趋近而不是n趋近!(所以面对数列极限时候先

第8篇:教你轻松求解考研数学数列极限

【摘要】极限是考研数学每年必考的内容,所占比重相当大,在此整理求数列极限的方法,仅供大家参考。

极限在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础*,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。

一、极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的

第9篇:考研数学之行列式的计算方法

行列式是线*代数中最基本的运算之一,也是考生复习线*代数必须掌握的两大基本技能之一(另一项是线*方程组)。后面的很多知识点都会用到行列式,如判断矩阵的可逆*,求矩阵的秩,求矩阵的特征值等。在考试中,这一部分如果单独出题的话往往以选择题或填空题的形式出现,且以考查抽象矩阵的行列式为主;更多的时候,行列式是与其他知识点(如线*方程组、特征值与特征向量等)结合起来考查的,我们往往把行列式视为解决问题的工具。

考生在复习行列式时,主要从如下三方面来把握:

首先理解行列式的定义,掌握行列式的基本*质和行列式

第10篇:考研数学大纲解析之极限

考研大纲已于今天(20xx年9月18日)正式发布。20xx年考研真题中,数学二和数学三的15题都是考查了极限计算方法。这两个解答题是以无穷小比较为依托,但本质是极限计算问题,总体难度和去年持平。结合20xx年考纲应该注意下面问题。

一、牢记极限的知识体系

极限这章包括三个部分:首先是极限的概念以及无穷小和无穷大的介绍;然后是极限的基本*质;最后是极限的计算方法。大家可以把这个知识体系与2015年真题做个对照,就会发现极限的计算是重点。

二、理解极限知识点内容

在牢记知识体系之后,大家要做的就是理解知识

等差数列,等比数列的基本知识

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

它可以看作等差数列广义的通项公式。 [编辑本段]二、等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:

今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?

书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了Sn=(a1+an)/2×n的求和公式 [编辑本段]三、等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.

⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).

⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 )

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3. [编辑本段]四、等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).

⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .

⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = .

⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.

⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小. 等比数列 简介与公式如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

(1)等比数列的通项公式是:An=A1*q^(n-1)

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:对于等比数列 的前n 项和,当n 无限增大时的极限,叫做这个无穷递缩数列的各项和。 [编辑本段]性质①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则

(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

等差数列课本总结??跪求.....

等差及等比这两种数列有许多相似的地方,其实等比数列取对数后就是一个等差数列了。记住以下的知识点会很有帮助:

1.都是两个未知数,首项a1及公差(比)q,需要两个条件列两个方程来求解。

2.q为相邻两项的差(商)

3.任一项为前后两项的算术(几何)平均:

6.奇数项时由中间项am的n倍(次方)求和:nam, (am)^n

等差数列的各种公式···

注:以上n均属于正整数。

如果先不管方阵中的正负号a.第一行全是1b,从2行3列开始所有元素都遵守如下规律Dn(i,j)=Dn(i-1,j)+Dn(i-1,j-1),就是说,除了第一排和主对角线的元素,所有元素的值都等于相邻左边元素的值加上相邻左上角的值。

等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

等差数列几年级的知识点

高一的知识,在必修5第一章。

一般上学期后半段会学。

等差数列是从第二项起,每一项和前一项的差是固定的值。

在等差数列这节课中,在解决问题一些实际问题中要紧紧围绕什么知识点分析?

1.求公差d或项数n.在求解时,一般要运用方程思想

2.求通项.求出等差数列的两个基本量a和d后,通项便可求出.

3.求特定项.利用等差数列的通项公式或等差数列的性质求解,求前n项和利用等差数列的前n项和公式直接求解,或利用等差中项间接求解.

4.等差数列的判定证明

这些题目都需要熟练掌握等差数列的性质,以及常用和补充性质,公式是一定要背的,切记,一定要背,然后通过做题来增加熟练程度,别觉得自己看一眼就懂了,最后要归纳总结

等差数列和等比数列的知识点。

如果一个等差数列的首项为 ,公差为 ,那么该等差数列第 项的表达式为:

即 第n项=首项 公差

补充:第n项=第m项+(n-m)乘公差

注意: n是正整数(相当于n个等差中项之和)

等差数列前N项求和,实际就是梯形公式的妙用:

一.从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

① 和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

② 首项=2和÷项数-首项或末项-公差×(项数-1)

③ 末项=2和÷项数-首项

(以上2项为第一个推论的转换)

④ 末项=首项+(项数-1)×公差

(上一项为第二个推论的转换)

注:1.常数列不一定成立

⑤2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)且等比数列a1≠ 0。。

;在运用等比数列的前n和时,一定要注意讨论公比q是否为1.

(3)从等比数列的定义、通项公式、前n项和公式可以推出:

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。

(5)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(6)由等比数列组成的新的等比数列的公比:

{an}是公比为q的等比数列

则,A、B、C构成新的等比数列,公比Q=q^n

则,A、B、C构成新的等比数列,公比Q=q

(2)在等比数列中,依次每 k项之和仍成等比数列。

(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则

(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。

(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

在等比数列中,首项A1与公比q都不为零。

注意:上述公式中A^n表示A的n次方。

(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

等差数列知识点详细分析

如果一个等差数列的首项为a1,公差为d,那么该等差数列第n项的表达式为:

若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

即(首项+末项)×项数÷2

注意:n是正整数(相当于n个等差中项之和)

等差数列前N项求和,实际就是梯形公式的妙用:

上底为:a1首项,下底为a1+(n-1)d,高为n。

一.从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

① 和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

② 首项=2x和÷项数-首项或末项-公差×(项数-1)

③ 末项=2x和÷项数-首项

(以上2项为第一个推论的转换)

④ 末项=首项+(项数-1)×公差

(上一项为第二个推论的转换)

注:1.常数列不一定成立

⑤2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和

等差中项即等差数列头尾两项的和的一半.但求等差中项不一定要知道头尾两项.

等差数列中,等差中项一般设为A(r).当A(m),A(r),A(n)成等差数列时。

为数列的平均数。并且可以推知n+m=2×r。

它可以看作等差数列广义的通项公式。

等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

省考行测技巧:等差数列?

等差数列这个知识点大家应该都不是很陌生,高中已经学过,在国家公务员考试里也经常出现,多数题目是考查最基本的通项公式和求和公式,再进一步就是中项求和公式。本文所讨论的是以上的三个公式在其他数学问题中的运用,中公教育希望给考生快速解题提供帮助。

1、等差数列与方阵问题

方阵问题在目前国考和省考中是一个较冷的考点,但是在事业单位等考试中还是时常出现。考生在做方阵问题的时候,一般是要了解方阵的一些基本的计算性质,例如:最外层边长的个数=最外层边长×4-4;相邻两层的边长差2个;相邻两层的总数差8个等等,大家注意第二句和第三句表述,如果把这两句话按照等差数列去理解的话,那就是:方阵的边长构成一个公差为2的等差数列;方阵的每一层构成一个公差为8的等差数列,这样再引入等差数列的相关公式,对于解决方阵问题就很有帮助。

例1:已知一个空心方阵摆满各种鲜花,一共有8层,最内层有9盆花,请问这个方阵一共有多少盆鲜花?

【中公解析】:根据本题的描述,这是一道空心方阵的问题,需要用到方阵的相关结论,本题已知最内层是9盆花,一共有8层,根据结论相邻两层相差8个,即相邻两层构成一个公差为8的等差数列。所以可知这个等差数列第一项是9,项数为8,公差为8,根据基本的通项公式:末项=第一项+(项数-1)×公差,可知最外层=9+(8-1)×8=65,此题是求总数,套用等差数列的基本求和公式:(首项+末项)×项数÷2=(9+65)×8÷2=296。

例2:某医院门前有一个大型的方形实心花坛,从外往里按照菊花、月季、菊花、月季……的顺序进行摆放,已知最外层的菊花一共要60盆,假设花盆的大小都一样,那么这个方形花坛中菊花比月季多( )盆。

【中公解析】:本题也是一个方阵问题,已知最外层由60盆,方形方阵是一层菊花,一层月季这样去布置,所以相邻两层肯定是一层菊花,一层月季,相差肯定是 8盆,只要求出层数,就能够求出其相差几个8盆,最外层是60,因为是实心方阵,最内层肯定是4盆,代入公式:60=4+(项数-1)×8,可以求出项数是8,那就是四层菊花,四层月季,总数相差4个8,即32。

以上两题所体现的就是方阵问题与等差数列的联系,只要熟练掌握,就能快速解题。

2、等差数列与和定最值

和定最值问题是国考和省考的“常客”,这个知识点如果细分的话分为:同向极值、逆向极值,这两个点里都有等差数列的影子。

(1)、同向极值中的运用

关于同向极值的描述简单复习一下,什么是同向极值?指的是,几个数的和一定,求最大量的最大值,最小量的最小值。

例3:6 名工人加工了 140 个零件,且每人加工的零件数量互不相同。若效率最高的工人加工了 28 个,则效率最低的工人最少加工了( )个零件。

(2)、逆向极值中的运用

关于逆向极值,这里简单复习一下,什么是逆向极值?指的是,几个数的和一定,求最大量的最小值,最小量的最大值。

例4:某连锁企业在 10个城市共有 100 家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第 5 多的城市有 12 家专卖店,那么专卖店数量排名最后的城市,最

【中公解析】:本题从最后一句可知是一道逆向求值问题。所求为专卖店排名最后的城市最多有几家店,要让最少的最多,就让其他城市的专卖店数量尽可能少,已知第5多的城市有12家店,所以第5多之前的四座城市分别是13、14、15、16。设数量最少的城市有X家,那往上四家即是,X+1、X+2、X+3、X+4,由此可列方程:12+13+14+15+16+X+X+1+X+2+X+3+X+4=100,解得X=4。

本题如果按照构造等差数列的角度去解就更快,请看下表:

一 二 三 四 五 六 七 八 九 十

通过观察,可以发现,前五个城市和后五个城市的数据构成两个等差数列,且都是奇数项,所以可以再次借用上述奇数项的中项求和公式,即前五项的和是14×5=70,所以后五项的和就是100-70=30,后五项的中间项是第八项X+2,可得式子30=5×(x+2),所以X=4。两种方法的优劣显而易见。

综上,把等差数列与方阵问题、极值问题联系起来,让解题更有技巧性,做的更快更准,中公教育专家提醒考生们在日常的练习中也要多多建立知识点之间的关系,对于解题是大有裨益。

我要回帖

更多关于 已知a的逆矩阵如何求a 的文章

 

随机推荐