苯酚溶于水吗加氧气会生成什么?

1、合成代谢中对于能量一般是_________能量的,而分解代谢一般是_________

2、生物氧化中,体内CO2的形成是有机物脱羧产生的,而脱羧方式有两种,即

3、原核生物中电子传递和氧化磷酸化是在_________上进行的,真核生物的电子

传递和氧化磷酸化是在_________中进行。

6、细胞色素是一类含有_________的蛋白质,存在于_________上,起着

7、泛醌是一个脂溶性辅酶,它可以接受呼吸链中从_________或_________传递

来的电子,然后将电子传递给_________。

8、细胞色素c是唯一能溶于水的细胞色素,它接受从_________来的电子,并将

11、线粒体内电子传递的氧化作用与ATP合成的磷酸化作用之间的偶联是通过

12、抑制呼吸链电子传递,从而阻止ATP产生的抑制剂常见的有_________、

13、如果在完整的线粒体中增加ADP的浓度,则呼吸作用中耗氧量_________,

但有寡毒素存在时,则耗氧量_________,以上这种相关的变化可被_________(试剂)所解除。

14、生物氧化是代谢物发生氧化还原的过程,在此过程中需要有参与氧化还原反

【专家解说】:苯酚 苯酚(C6H6O,PhOH),又名石炭酸、羟基苯,是最简单的酚类有机物,一种弱酸。常温下为一种无色晶体。有毒。有腐蚀性,常温下微溶于水,易溶于有机溶液;当温度高于65℃时,能跟水以任意比例互溶,其溶液沾到皮肤上用酒精洗涤。暴露在空气中呈粉红色。          三维结构一种重要的苯系中间体[1]。又称石炭酸。低熔点(43℃)无色晶体 ,在空气中放置及光照下变粉红 ,有特殊气味,沸点181.84℃。对人有毒,有腐蚀性,要注意防止触及皮肤。工业上主要由异丙苯制得。苯酚产量大,1984年,世界总生产能力约为5兆吨。苯酚用途广泛。第一次世界大战前,苯酚的唯一来源是从煤焦油中提取。绝大部分是通过合成方法得到。有磺化法、氯苯法、异丙苯法等方法。   分子结构: 苯环上的C原子以sp2杂化轨道成键,O原子以sp2杂化轨道成键。   苯酚主要用于制造酚醛树脂 ,双酚A及己内酰胺。其中生产酚醛树脂是其最大用途 ,占苯酚产量一半以上 。此外,有相当数量的苯酚用于生产卤代酚类。从一氯苯酚到五氯苯酚,它们可用于生产2,4-二氯苯氧乙酸( 2,4-滴 )和 2,4,5-三氯苯氧乙酸(2,4,5-涕 )等除草剂;五氯苯酚是木材防腐剂;其他卤代酚衍生物可作为杀螨剂、皮革防腐剂和杀菌剂 。由苯酚所制得的烷基苯酚是制备烷基酚-甲醛类聚合物的单体,并可作为抗氧剂、非离子表面活性剂、增塑剂、石油产品添加剂。苯酚也是很多医药(如水杨酸、阿司匹林及磺胺药等)、合成香料、染料(如分散红3B)的原料。此外,苯酚的稀水溶液可直接用作防腐剂和消毒剂。   苯酚俗名石炭酸,分子式C6H5OH,比重1.071,熔点42~43℃,沸点182℃,燃点79℃。无色结晶或结晶熔块,具有特殊气味(与浆糊的味道相似)。置露空气中或日光下被氧化逐渐变成粉红色至红色,在潮湿空气中,吸湿后,由结晶变成液体。酸性极弱(弱于H2CO3),有特臭,有毒,有强腐蚀性。[皮肤接触纯PhOH会变白,然后变黑,腐蚀性极强,要注意安全]室温微溶于水,能溶于苯及碱性溶液,易溶于乙醇、乙醚、氯仿、甘油等有机溶剂中,难溶于石油醚。常用于测定硝酸盐、亚硝酸盐及作有机合成原料等.实验室可用溴(生成白色沉淀2,4,6-三溴苯酚,十分灵敏)及FeCL3 (生成[Fe(C6H5O)6]3-络离子呈紫色)检验. 编辑本段工业生产   苯酚工业生产以异丙苯法为主,该法具有产品纯度高、原料和能源消耗低等优点,但其发展受联产物丙酮的制约。近年来,人们开始研究苯直接羟基化(也称氧化)制苯酚的方法,其中有些成果已显示出工业化前景。目前研究的氧化剂类型主要有N2O、H2O2、O2/H2等。   苯酚主要用于生产酚醛树脂、己内酰胺、双酚A、己二酸、苯胺、烷基酚、水杨酸等,此外还可用作溶剂、试剂和消毒剂等,在合成纤维、合成橡胶、塑料、医药、农药、香料、染料以及涂料等方面具有广泛的应用。 编辑本段世界苯酚生产与消费现状   自1923年世界上采用苯磺化法首次生产苯酚以来,世界苯酚的生产发展很快。2003年世界苯酚的总生产能力约为805.3万吨,2004年增加到约865.6万吨,比2003年增长约7.5%。Ineos苯酚公司是目前世界上最大的苯酚生产厂商,生产能力约占世界苯酚总生产能力的18%。预计2005年世界苯酚的总生产能力将达到955.3万吨。   2003年,世界苯酚的总消费量约为735万吨,2004年总消费量增加到约748万吨,同比增长约1.8%。世界各个地区对苯酚的需求有所不同,其中美国的需求量约占总需求量的26.8%,欧洲的需求量约占总需求量的28.3%,日本的需求量约占总需求量的11%,亚洲(不包括日本)的需求量约占总需求量的20.1%,其他地区的需求量约占总需求量13.7%。   我国苯酚的产量不能满足国内实际生产的需求,每年都得大量进口,且进口量呈不断增加的趋势。2003年进口量达到32.27万吨,比2002年增长48.4%。2004年由于我国对苯酚进口进行了反倾销,进口量减少到28.12万吨。   为了满足日益增长的需求,国内许多苯酚生产厂家都纷纷扩建或新建生产装置。蓝星化工材料公司计划新建两套分别为6.2万吨/年和12.4万吨/年苯酚生产装置,2005年、2006年相继建成投产。香港建滔拟在常州新建一套12.4万吨/年苯酚生产装置。燕山石化拟将现有苯酚生产能力扩大到24.0万吨/年。沈阳化工集团公司拟新建一套12.4万吨/年苯酚生产装置。若这些项目能够按计划完成,预计到2006年,我国苯酚的总生产能力将达到100万吨。   近几年,我国苯酚的需求增长速度较快。2004年我国苯酚的表观消费量为61.96万吨,年表观消费量的年均增长率为17.3%。目前,我国苯酚主要用于生产酚醛树脂、双酚A、水杨酸以及壬基酚等。2004年我国苯酚的消费结构为:酚醛树脂对苯酚的消费量占总消费量的29.0%,双酚A占31.1%,水杨酸占10.5%,壬基酚占8.1%,其他方面占21.3%。   预计在今后几年中,双酚A将成为我国苯酚下游产品中重点发展的品种之一,目前有许多公司准备新建或扩建双酚A生产装置。2005年,我国双酚A的需求量达到35万吨,对苯酚的需求量将达到30万吨。   酚醛树脂是目前我国苯酚最主要的消费领域,随着新材料的发展,其部分用途将逐渐被其他材料所取代,因此在今后苯酚消费中所占的比例将会逐渐下降。2005年我国酚醛树脂对苯酚的需求量约为17.5万吨。   水杨酸主要用于生产阿司匹林。目前我国水杨酸的总生产能力约为5万吨/年,2004年对苯酚的需求量约为6.5万吨,2005年对苯酚的需求量将达到约7万吨。预计未来几年我国水杨酸对苯酚的需求量将以年均约11%的速度增长。   壬基酚主要用作非离子表面活性剂,目前我国总生产能力约为3万吨/年,产量约为1.6万吨/年,2004年对苯酚的需求量约为5万吨。随着我国日用化工和合成材料工业等的快速发展,加上国内壬基酚合成技术日益完善以及下游系列产品的不断开发,壬基酚的消费量将保持较高的增长势头,2005年我国壬基酚对苯酚的需求量达到5.5万吨。   苯酚(别名:石炭酸 )   分子式:C6H6O   结构简式:C6H5OH   官能团:-OH   分子量:94.11   CAS NO.108-95-2   CAS 登录号108-95-2   EINECS 登录号203-632-7 编辑本段物理性质   性状 无色针状结晶或白色结晶熔块。瓶口的苯酚显粉红色,原因是被空气中的氧气氧化。有特殊的臭味和燃烧味,极稀的溶液具有甜味。   熔点 43℃   沸点 181.7℃   凝固点 41℃   相对密度 1.0576   折射率 1.54178   闪点 79.5℃   溶解性 在水中溶解性不大,但当温度高于70°C时,则能与水混容。易溶于乙醇、乙醚、氯仿、甘油、二硫化碳、凡士林、挥发油、固定油、强碱水溶液。几乎不溶于石油醚。 编辑本段储存注意事项储存管理要求   储存于阴凉、通风的库房。远离火种、热源。避免光照。库温不超过30℃,相对湿度不超过70%。包装密封。应与氧化剂、酸类、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。应严格执行极毒物品“五双”管理制度。 钠与苯酚反应的实验   苯酚在通常温度下是固体,与钠不难顺利发生反应,如果采用加热熔化苯酚,再加入金属钠的方法进行实验,苯酚易被氧化,在加热时苯酚颜色发生变化而影响实验效果。本人在教学中采取下面的方法实验,操作简单,取得了满意的实验效果。   在一支试管中加入2~3毫升无水乙醚,取黄豆粒大小的一块金属钠,用滤纸吸干表面的煤油,放入乙醚中,可以看到钠不与乙醚发生反应。然后再向试管中加入少量苯酚,振荡,这时可观察到钠在试管中迅速反应,产生大量气体。这一实验的原理是苯酚溶解在乙醚中,使苯酚与钠的反应得以顺利进行。 溴水与苯酚反应的实验   苯酚与溴水反应生成白色沉淀(三溴苯酚)   注意:必须要加过量溴水并且是浓溴水.因为少量溴水生成物溶于苯酚,而如果不是浓溴水则不生成沉淀。   【苯酚的毒理以及相关处理】 侵入途径   可经呼吸道、皮肤和消化道吸收。 编辑本段毒理学简介   低浓度酚能使蛋白变性,高浓度能使蛋白沉淀。对皮肤、粘膜有强烈的腐蚀作用,也可抑制中枢神经系统或损害肝、肾功。   水溶液比纯酚易经皮肤吸收,而乳剂更易吸收。吸入的酚大部分滞留在肺内,停止接触很快排出体外。吸收的酚大部分以原形或与硫酸、葡萄糖醛酸或其他酸结合随尿排出,一部分经氧化变为邻苯二酚和对苯二酚随尿排出,使尿呈棕黑色(酚尿)。   人口服致死量报道不一,LD为2~15g,或MLD为140mg/kg,14g/kg。国外报道酚液污染皮肤面积为25%,10分钟死亡,血酚为0.74mmol/L。   临床表现   急性中毒:吸入高浓度蒸气可引起头痛、头昏、乏力、视物模糊、肺水肿等表现。   误服可引起消化道灼伤,出现烧灼痛,呼出气带酚气味,呕吐物或大便可带血,可发生胃肠道穿孔,并可出现休克、肺水肿、肝或肾损害。一般可在48小时内出现急性肾功能衰竭。血及尿酚量增高。   皮肤灼伤:创面初期为无痛性白色起皱,继而形成褐色痂皮。常见浅Ⅱ度灼伤。可经灼伤的皮肤吸收,经一定潜伏期后出现急性肾功能衰竭等急性中毒表现。   眼接触:可致灼伤。 编辑本段应急处理   急性中毒:立即脱离现场至新鲜空气处。皮肤污染后立即脱去污染的衣着,用大量流动清水冲洗至少20分钟; 面积小也可先用50%酒精擦拭创面或用甘油、聚乙二醇或聚乙二醇和酒精混合液(7:3)抹皮肤后立即用大量流动清水冲洗。再用饱和硫酸钠溶液湿敷。口服者给服植物油15~30ml,催吐,后温水洗胃至呕吐物无酚气味为止,再给硫酸钠15~30mg。消化道已有严重腐蚀时勿给上述处理。早期给氧。   合理应用抗生素。防治肺水肿、肝、肾损害等对症、支持治疗。糖皮质激素的应用视灼伤程度及中毒病情而定。病情(包括皮肤灼伤)严重者需早期应用透析疗法排毒及防治肾衰。口服者需防治食道瘢痕收缩致狭窄。   眼接触:用生理盐水、冷开水或清水至少冲洗10分钟,对症处理。 编辑本段苯酚的鉴别   第一步:用药匙取未知粉末(因为是鉴定,并不能确定地说是苯酚,在答题时尤其注意),观察其性状,是否为无色晶体,另外是否有少许粉红色粉末存在(此处利用苯酚的自身性状)。观察完毕将适量粉末置于试管中,加入冷水振荡,发现得到的是白色的浊液(此处利用苯酚微溶冷水的物理性质)。然后逐滴加入浓度为5%的NaOH溶液并不断振荡,发现浑浊消失,试管中的溶液此时已变澄清(此处利用苯酚的弱酸性)。由此,我们得到第一步结论,符合苯酚的溶解特性和弱酸性。   第二步:将上一步得到的溶液分为三个试管盛放,向第一支试管中加入盐酸,发现溶液变浑浊;向第二支试管中加入醋酸,发现溶液变浑浊;向第三支试管中通入CO2气体,发现溶液仍然变浑浊。由此,我们得到第二步结论,符合苯酚的酸性弱于碳酸的性质。   第三步:此次分两个实验进行观察,1)取一锥形瓶,向其中加入苯酚溶液,然后向其中缓慢滴加浓溴水,发现生成了白色沉淀。2)取一锥形瓶,向其中加入溴水,发现生成了不大明显的白色沉淀,并且随着浓溴水的滴加量逐渐增加,对锥形瓶加以振荡,白色沉淀也逐渐变少最终消失。我们知道,在后一次的实验中,实际上是苯酚过量了,那么在这里说明一点苯酚溶液自身就是很好的有机溶剂,生成的物质是三溴苯酚,它易溶于苯酚,因此沉淀消失的原因也就在这里。由此,我们得到第三步结论,由于在较简单的条件下就可发生取代反应,符合苯酚中羟基作为活化基团的性质。

进一步了解相关内容你可以在站内搜索以下相关问题

  • 苯酚的显色反应原理是什么

进一步了解相关内容你可以在站内搜索以下相关关键词

1.怎样清除玻璃仪器上粘附的不易溶于水的物质?

在玻璃仪器上粘附的不易溶于水的物质有碳酸盐、氢氧化铁或氢氧化铜等氢氧化物、二氧化锰、硫、银盐、银镜、油污、酚醛树脂等。现将它们的洗涤方法介绍如下:

(1)除去碳酸盐可滴盐酸或用盐酸浸洗。例如碳酸钙就可用此法洗去。

(2)氢氧化物也可以用稀盐酸处理,将它们转变成可溶性物质(三氯化铁、氯化铜等)后再用水冲洗。

(3)二氧化锰可用浓盐酸清除,也可用硫酸亚铁的酸性溶液、用硫酸酸化的亚硫酸钠溶液、用硫酸酸化的草酸盐溶液清除。盛高锰酸钾溶液的试剂瓶和制氯气的烧瓶内壁常用上述方法清除。

(4)硫迹可加石灰水再加热煮沸除去。

生成的多硫化钙和硫代硫酸钙都能被水洗去。

(6)银镜可用稀硝酸并稍加微热清除。

(7)油污一般可用热的纯碱(Na2CO3)、烧碱(NaOH)溶液或热肥皂水、合成洗涤剂乃至铬酸洗液来清除。

(8)酚醛树脂可加入少量乙醇,浸泡几分钟,然后刷洗

2.磨口活塞打不开时怎么办?

如果是凡士林等油状物质粘住活塞,可以用电吹风或微火慢慢加热使油类粘度降低,或熔化后用木棒轻敲塞子即可打开。

活塞长时间不用被灰尘等积垢粘住,可把它放入水中,浸泡几小时后便可打开。

因碱性物质粘住的活塞可将仪器在水中加热至沸,再用木棒轻敲塞子。

对于贮有试剂的试剂瓶塞打不开时,要针对所贮试剂的性质采取适当的方法。若瓶内盛放的是腐蚀性试剂如浓硫酸等,先要把瓶放在塑料桶内以防瓶破裂时浓硫酸四溅,操作者要戴有机玻璃面罩,操作时不要使脸部离瓶口太近。准备工作做好后,可用木棒轻敲瓶塞。也可洗净瓶口。用洗瓶吹洗一点蒸馏水润湿磨口,再轻敲瓶塞。打开有毒蒸气的瓶塞(如液溴)要在通风橱内操作。对于因结晶或碱金属盐沉积及强碱粘住的瓶塞,可把瓶口泡在水中或稀盐酸中,经过一段时间后可能被打开.

3.较常用的但又不宜长久存放的溶液有哪些?
(4)氯水、溴水、碘水。
在保存亚铁盐溶液时,应加入足够浓度的酸,必要时应加入几颗铁钉来防止氧化。
(6)高锰酸钾溶液。KMnO4溶液的酸性溶液、中性溶液、微碱性溶液中都会缓慢地分解(在中性、微碱性溶液中分解较慢些),受光照会催化它的分解。所以KMnO4溶液应盛于棕色瓶中避光保存。
(7)硝酸银溶液。AgNO3溶液受光照而逐渐分解析出Ag,AgNO3溶液应当装在棕色瓶中。
(8)氯化亚锡溶液。2Sn2++O2+4H+=2Sn4++2H2O保存时可在溶液中加些锡粒。
(9)银氨溶液。银氨溶液长久存放易分解而生成黑色的叠氮化银(AgN3)沉淀,叠氮化银在干燥时一受震动会分解而发生猛然爆炸。配制银氨溶液时,应防止加入过量的氨水,否则会生成容易爆炸的雷酸银(AgONC)。
(10)氢氧化铜的悬浊液(检验醛基和多羟基时用)。存放时间较久,氢氧化铜会因分解而失效.
4.实验室制取氧气时,为什么有时会闻到氯气的气味,并有“白雾”产生?
在实验室里用加热氯酸钾来制取氧气,加入二氧化锰作催化剂,对于二氧化锰的催化作用,到目前为止还没有肯定的解释。有的文献认为反应过程如下:
有时生成的氯化钾带有紫红色,说明了反应过程中有MnO4-存在。
“白雾”是氯酸钾受热分解生成的氯化钾以微粒分散在氧气中的原因。
但是,有的文献认为,在氯酸钾受热分解反应机理是:
2Mn2O74MnO2+3O2↑持这种看法的,对于为什么存在氯气的气味得不到应有的解释.
5.在实验室中制取氢气时,锌粒表面的黑色物质是什么?
将锌粒和稀硫酸反应制取氢气时,经常发现残余的锌粒表面附着一层黑色的物质,或者在锌粒全部溶解后看到有黑色的悬浮物残留在液体中。不纯锌粒中常含有Pb、Bi、Cu、Sn等杂质,当锌粒和酸发生反应时,锌中所含的Pb、Bi、Cu、Sn等较不活泼的金属杂质就游离出来,成微粒状态而呈黑色,并部分沉积在锌粒表面。它们能形成无数微小的原电池,对氢气发生的速度起促进作用。
6.电解水时为什么要加入少量电解质?
从纯水的导电实验测得,在25℃时,纯水中H+离子和OH-离子的浓度等于10-7摩/升。因此,实际上观察不到水的电解现象。这是因为,当H+离子在阴极上得到电子而生成氢气时,破坏了附近水的电离平衡,最终使阴极附近的OH-离子的数目相对地增多,这就使阴极附近的溶液带负电,它会吸引其它的H+离子并阻止H+离子继续在阴极上放电。阳极的情况与此相仿。若在水中加入少量某种强电解质,由于这些强电解质在溶液中全部电离,离子数目增多,在电场的影响下分别向两极移动,这样,水在电解时,阴阳两极附近的溶液里离子的电荷得到平衡,使水的电解能继续进行。
以纯水中加入Na2SO4通电分解为例,在水溶液中存在着Na+、H+、SO42-、OH-四种离子。根据它们电极电位的高低,在阳极,OH-离子放电,产物是氧气。随着OH-离子不断放电,如前所述,阳极附近聚集了相对多的H+离子时,由于SO42-离子不断迁移到阳极附近,使阳极附近溶液里离子的电荷得到了平衡。在阴极,H+离子放电,产物是氢气。同理,阴极附近溶液里离子的电荷也得到平衡。这样,水的电离平衡就不断向右移动,H+离子和OH-离子不断地在两极上放电,但Na2SO4并不发生电解,它只是起着使电极附近电解溶液里的电荷迅速得到平衡,从而使水的电解能继续进行的作用。
7.电解水时为什么收集的氢气和氧气体积之比不恰是2∶1?怎样克服?
电解水时,氧气的体积常小些,其原因主要有二:
(1)氢、氧两种气体在水中的溶解度不同。氧气的溶解度稍大些。
(2)电极的氧化、电极产生副反应等。如用稀硫酸溶液作电解液,有人认为有下列副反应发生:
生成的过氧化氢在酸性溶液中较稳定,不易放出氧气。
克服的办法是,在电解液中加入碱比加入酸的误差会小些。或者事先将电解液用氧气饱和,可以消除因溶解度不同而产生的误差。
8.为什么结晶时,有些盐带有结晶水,有些盐不带结晶水?
当盐溶解在水中时,阴离子和阳离子会分别吸引极性水分子的正极和负极一端,从而形成水合离子。阳离子通常都比阴离子小,所以与水分子间的吸引力远比阴离子强,能形成比较稳定或相当稳定的水合离子,以致有些盐从溶液中结晶析出时,晶体内仍带有一定个数的水分子。
阳离子水合能力的大小,主要决定于阳离子的大小和所带电荷的多少。阳离子的半径越小,电荷越多,水合能力就越大。在碱金属中,除半径小的Li+、Na+离子能形成水合离子时,其余的K+、Rb+、Cs+离子都不易形成水合离子。对碱土金属来说,由于电荷增多,半径减小,形成水合离子的倾向增大。不过这种倾向,同样随着碱土金属离子半径的增大而减小。阳离子所吸引的水分子数目同样与半径和电荷有关,半径较大、电荷较多的阳离子,既有较强的水合倾向,又能吸引较多的水分子。
9.氯水和碘化钾溶液反应,为什么有时看不到紫黑色的碘析出?
氯水和碘化钾溶液反应的化学方程式如下:
由此可见,反应中应见到有紫黑色的碘析出。但往往看到的是溶液呈棕红色或无色的现象。
如果碘化钾溶液过量,那末生成的碘还未来得及沉析就会与溶液中多余的碘化钾反应而生成棕红色的多碘化物:
如果氯水过量,那么生成的碘就将进一步被氧化为碘酸:
所以,溶液呈现棕红色是由于碘化钾溶液过量引起的,而溶液为无色则是由于氯水过量引起的。
10.在实验室配制碘的水溶液通常不是将碘溶于水,而是将碘溶于碘化钾溶液,这是为什么?
固态碘是非极性分子晶体,难溶于极性较强的水中,在25℃时,1升水中只能溶解0.3克碘。实验室使用的碘水要求有比较大的浓度。为了得到浓度较大的碘水,可先向水中加入少量碘化钾晶体,然后再加入碘的晶体。这是由于在含有碘离子的溶液中,每个碘离子可以跟一个碘分子结合,生成三碘离子I3-。生成的I3-离子能够离解成碘和碘离子,溶液中有下列平衡存在:
当反应需要碘时,上述平衡即向左方移动,使溶液内有碘供应,所以含有I3-离子溶液的性质与含有I2的溶液即碘水的性质相似。
11.氯水和硫化钠溶液反应时,为什么往往看不到乳黄色浑浊现象?
氯水和硫化钠溶液反应的化学方程式如下:
由此可见,反应中应有乳黄色浑浊现象产生,表明有硫析出。但往往看到的是溶液呈黄色或无色的现象。
如果硫化钠溶液过量,那末反应中产生的单质硫就会继续和硫化钠反应而生成多硫化钠Na2Sx(x=2~5),多硫化钠能溶于水,这时溶液呈黄色。
如果氯水过量,那末反应中产生的单质硫会进一步氧化为H2SO4。反应式如下:
可知氯水和硫化钠溶液反应得不到硫的原因是由于硫化钠或氯水过量所引起的。
12.铜与浓硫酸共热时产生的黑色物质是什么?
国外的化学工作者指出铜和浓硫酸共热时最常见到的反应产物是硫酸铜和硫化亚铜。
在80℃以后,随着温度的提高,反应中硫酸铜的生成逐渐增加,而硫化亚铜的生成却逐渐减少,到达270℃时,硫化亚铜在反应中完全消失。反应
在各种温度都占优势,而在270℃以上时则是唯一的反应。另一个反应
与第一个反应同时进行。在80℃左右时,第二个反应达到和第一个反应相对的最大速率。而在80℃以后,由于下述两个反应的存在,硫化亚铜在反应中逐渐消失。
近年来,我国化学工作者对该反应的机理也进行了研究,得出如下结论:在较低温度下,铜与浓硫酸作用后,先生成的黑色物质为Cu2S;提高温度后,生成的黑色物质为CuS。指出铜与浓硫酸之间的反应主要有:
第一个反应的反应温度在250℃附近。当铜耗尽时,生成的Cu2S按第三、四个反应式发生反应。
铜与浓硫酸作用后,生成的黑色物质CuS、Cu2S得以沉淀出来,可能是因为它们的溶度积较小的缘故。
13.久置于空气中的硫化钠为什么会变黄?
硫化钠具有强烈的吸湿性,在空气中易被氧气氧化为多硫化物,反应式如下:
Na2S也可以被氧化为S,而S能溶解于Na2S形成多硫化钠。反应如下:
多硫化物中硫的个数为2~5。多硫化物都是有色的,二硫化物呈浅黄色,五硫化物为深黄色或红色,其它多硫化物颜色介于两者之间。Na2S暴露于空气中时间越长,则越易形成多硫化物,所以颜色越来越深。
14.在加热氢氧化钙和氯化铵制取氨气的实验中,黄色物质是什么?
将黄色物质溶于少量水中,分别用KSCN和K4[Fe(CN)6]检验,当加入KSCN时生成血红色溶液,当加入K4[Fe(CN)6]时产生深蓝色沉淀。这说明黄色杂质中含有Fe3+
检验氯化铵,发现氯化铵中并不含有铁的化合物,初步推测Fe3+是氢氧化钙带进去的。为了证实这一点,可用纯度较高的氢氧化钙和氯化铵重复制取氨气的实验,结果没有发现黄色物质产生。由此可以断定,那种黄色物质是粗石灰中所含有的三价铁的化合物,在高温时和氯化铵反应产生的三氯化铁。因为三氯化铁的升华温度(大于300℃)与氯化铵的升华温度(332~350℃)相差无几,所以在实验过程中,在试管壁上白霜状的氯化铵的升华物附近,常伴随有三氯化铁黄色的升华物质。
15.为什么浓硝酸跟金属反应的还原产物为NO2,稀硝酸的还原产物主要是NO,更稀的硝酸的还原产物有N2O、N2……NH3等?
当浓硝酸与金属作用时,硝酸本身浓度的因素占主要地位,第一步的还原产物主要是亚硝酸,亚硝酸是不稳定的化合物,它分解为NO2和NO:
而NO2、NO和HNO3之间又有如下的平衡:
在浓硝酸中,平衡向左移动,因此还原产物主要是NO2。在反应过程中,尽管有NO生成,但它在浓硝酸中不能存在,继续被氧化成NO2
关于稀硝酸浓度(约为8~10N)与金属反应的还原产物,从下面的化学平衡方程式可以看出
在稀硝酸中,平衡向右移动,因此还原产物主要是NO。
至于在更稀的硝酸中,还原产物有N2O、N2……NH3,有人曾作过这样的解释:金属活动性顺序表中氢以上的金属在稀硝酸中的第一步反应,是能置换出氢的,但随着即与硝酸发生第二步反应,将硝酸还原成一系列的还原产物。
这些还原产物,除本身分解成为简单的化合物外,相互之间又发生反应,生成一系列不同价态的氮的化合物。这第三步反应,有两类:
(1)还原产物本身的分解反应:
(2)还原产物相互的反应:
总之,硝酸与金属的反应比较复杂,对反应机理还不能得到一致的说法。
16.金属镁与不同浓度的硝酸反应时,有哪些产物?
根据实验结果,金属镁与不同浓度的硝酸反应时,有下列几种情况:
(1)当硝酸浓度大于10N时
(4)当硝酸浓度小于0.1N时
17.金属铝与不同浓度的硝酸反应时,有哪些产物?
根据实验结果,金属铝与不同浓度的硝酸反应时,有下列几种情况:
(1)当硝酸浓度大于8N时
(2)当硝酸浓度为3~4N时
(3)当硝酸浓度在1~3N时
(4)当硝酸浓度小于1N时
18.为什么氯化铜溶液跟碳酸钠溶液反应的产物是氢氧化铜,而不是碳酸铜?
氯化铜溶液跟碳酸钠溶液进行反应时,实验的结果是除有蓝色沉淀产生外,还有二氧化碳气体产生。这是由于氯化铜溶液跟碳酸钠溶液混和,水解反应很完全的缘故。
为什么Cu2+跟CO32-不结合成碳酸铜呢?比较常温下Cu(OH)2和CuCO3的溶度积便可知道:
Cu2+跟OH-结合成Cu(OH)2比Cu2+跟CO32-结合成CuCO3容易得多,所以,在这个反应里水解占主导地位。
19.中和滴定时,怎样选择酸碱指示剂?
在实际操作时,用已知浓度的标准酸(或碱)慢慢滴入未知浓度的碱(或酸)中,到酸和碱的克当量数相等,这时称为等当点。中和反应达到等当点时,溶液外观一般没有变化,需要利用酸碱指示剂的变色作为到达等当点的信号。
选择一个合适的指示剂,一方面要了解指示剂的变色范围,另一方面要了解在滴定过程中溶液pH值变化的情况,尤其是在达到等当点前后pH值突变的情况。在滴定过程中,我们把溶液pH值与加入标准酸(或碱)液量的对应关系作图,可以得到滴定曲线(图12-1),在等当点附近加入一滴酸(或碱)所引起的pH值急剧变化,在滴定曲线上几乎形成一段垂直线,这种急剧变化称为滴定突跃,这一垂直线所对应的pH值范围称为突跃范围。滴定突跃是选择指示剂的主要根据。
最理想的指示剂应该恰好在等当点时变色,但这样的指示剂很难找到,而且也没有必要。实际上,凡在pH4.3~9.7以内变色的指示剂都可保证测定有足够的准确度。由上图可知,酚酞变色时,等当点已过,NaOH已加入过量,即滴定终点比等当点略迟,但酚酞变色范围的pH值为8~10,在等当点附近的pH突跃范围以内,从等当点到酚酞开始变红时,NaOH的加入量相差不超过半滴。所以,滴定虽然略有一些误差,但符合容量分析的要求,因此酚酞可以用作这一中和滴定的指示剂。如果用甲基橙作指示剂,虽然滴定终点比等当点略早,但当甲基橙由红刚变橙时,加入的溶液量跟等当点相差也不超过半滴,这点误差也是可以忽略不计的。这就是说,凡是指示剂的变化范围全部或部分在滴定突跃范围内都可使用。
强酸与强碱相互滴定时,反应生成的盐不发生水解,溶液的pH值等于7,滴定突跃范围的pH值在4.3~9.7。甲基橙和酚酞都可以用作指示剂。
强酸与弱碱相互滴定时,反应生成的盐水解后使溶液显酸性。如盐酸滴定氨水,等当点时溶液pH值为5.3,滴定突跃范围的pH值在4.3~6.3之间,可选用甲基橙为指示剂,不宜选用酚酞。如图12-2所示。
强碱与弱酸相互滴定时,反应生成的盐水解后使溶液显碱性。如NaOH滴定CH3COOH,等当点时溶液pH值为8.7,滴定突跃范围的pH值在7.7~9.7,显然,酚酞的变色范围恰好在突跃范围之内,可作为这一滴定的指示剂,但不宜选用甲基橙。如图12-3所示。
弱酸盐或弱碱盐的滴定常直接用标准酸或标准碱溶液。如碳酸钠的滴定,如使用标准盐酸,反应分两步进行:
第一步反应达到等当点时,溶液pH值为8.31,可用酚酞作指示剂;第二步反应达到等当点时,溶液pH值为3.9,可选用甲基橙为指示剂。
20.酚酞在稀碱中呈红色,在浓碱中无色。它在稀酸中无色,在浓酸中却呈红色。这是为什么?
酚酞是一种有机弱酸,在水里的溶解度很小,易溶于酒精,所以一般把它制成1%的酒精溶液应用。
酚酞在弱酸性或中性溶液中,一般是以无色的内酯式存在;在稀碱中则以红色的醌式结构的醌酚盐存在;在浓碱中,醌式结构被破坏,转化成无色的羧酸盐。所以,酚酞与较浓的碱溶液作用时,显红色后又立即褪去。例如,向2%的氢氧化钠溶液中滴入酚酞时,只有瞬间显红色,马上褪成无色;向低于5%的氢氧化钠溶液中滴入酚酞,显红色并可以较长时间不褪色。
酚酞在浓盐酸或浓硫酸中变成红色,也是因为结构发生变化。
21.锌是强还原剂,高锰酸钾是强氧化剂,为什么纯锌不能使高锰酸钾溶液褪色?
用锌粉和酸性高锰酸钾溶液作用。它们的标准电极电位分别是:Zn2+/Zn为-0.763伏,MnO4-/Mn2为+1.51伏
得到的是正值,而且电极电位差值很大,从理论上说,这个反应可以发生。但实际上把纯锌加入高锰酸钾溶液中,看不到它褪色。这不是反应不能发生,而是在常温和没有催化剂存在的条件下,这个反应的反应速度极慢,几乎不发生反应。
22.酯水解时为什么既可用酸又可用碱作催化剂?
酯在酸性溶液里水解时,第一步是H加到烷氧基的氧原子上。
酯在碱性溶液里水解时,第一步是OH-加到羰基的碳原子上。
前一个生成物能跟OH-离子相结合,后一个生成物能跟H离子相结合,在两种情况下都得到相同的中间产物:
这个中间产物分裂成醇和酸:
酯的水解在碱的作用下能更快地进行,这是因为碱既能起催化作用,又能跟生成的酸结合成盐,使平衡向水解方向进行。
23.为什么制取乙烯时,浓硫酸要过量,且不能浓度太大?
实验室里制取乙烯,是用乙醇跟浓硫酸作用,首先生成硫酸氢乙酯,然后硫酸氢乙酯在160℃以上分解,生成乙烯和硫酸。
乙醇的酯化反应是可逆的,为了充分利用乙醇,使平衡向生成酯的方向移动,所以必须使浓硫酸过量。经验证明:1体积乙醇(浓度不低于95%)和3体积浓硫酸(24N)混和,乙醇的酯化程度很高,乙醇损失很少。随着硫酸氢乙酯的分解,乙烯的生成,反应物中硫酸的量逐渐增多,乙醇量相对减少,故硫酸用量再多也是多余的了,所以硫酸和乙醇用量以3∶1为宜。
由于硫酸具有氧化性,且浓度越大氧化性越强,在加热时,有一部分乙醇被氧化,结果生成CO2、CO、C、SO2等(因此试管中常有黑色物产生)。然而硫酸稀了又不利于乙烯的生成,所以一般用24N的硫酸较为合适。
24.为什么用碳化钙制取乙炔时常有难闻的气味产生?怎样除去?
生产碳化钙的原料是生石灰和焦炭,它们中常含有杂质硫、磷和砷。因此当用电弧炉制造碳化钙时,同时可生成磷化钙、硫化钙,砷化钙。在碳化钙和水反应时,磷化钙、硫化钙、砷化钙也跟水反应,生成PH3、H2S、AsH3混杂在乙炔之中,使乙炔具有难闻的气味和毒性。
为了把它们除去,可使气体通过酸性重铬酸钾洗液和碱溶液进行洗涤:PH3被氧化为H3PO,H2S被氧化成K2SO,AsH3被氧化成H3AsOS。通过碱液再除去剩余的pH3、H2S、AsH3和酸等。
25.为什么乙烯比乙炔容易使溴水褪色?
在乙炔分子中,有两个π键,在乙烯分子中,只有一个π键,但相对来说,乙炔分子中π电子云不如乙烯中π电子云集中。另外,乙炔分子中碳原子是sp杂化,乙烯分子中碳原子是sp2杂化。凡碳原子杂化电子云s成分愈大,这个碳原子的电负性也愈大,所以乙炔分子中碳原子的电负性比乙烯分子中碳原子的电负性大,再加上乙炔分子中两个碳原子之间的共用电子比乙烯的多,造成乙炔的键长比乙烯的短,乙炔分子中的π键比乙烯分子中的π键结合得比较牢固。
正由于乙烯和乙炔分子具有上述结构上的差异,因此表现在对不同试剂的反应上,活泼性就不同。乙烯分子中π电子云比乙炔的集中,当遇到亲电试剂进攻时,乙烯比乙炔易加成。溴和高锰酸钾都属于亲电试剂。
26.烯烃和炔烃被高锰酸钾溶液氧化的产物是什么?
高锰酸钾是强氧化剂,它能和许多有机物发生化学反应,但在不同介质中,高锰酸钾的还原产物是不同的。一般来说,在中性和弱碱性溶液中,高锰酸钾被还原为二氧化锰;在酸性溶液中,高锰酸钾被还原为二价锰盐。而且,高锰酸钾的氧化能力在酸性溶液中比在中性或碱性溶液中强得多。
(1)烯烃与高锰酸钾溶液的反应
中性或碱性的稀高锰酸钾冷溶液能使烯烃氧化成二元醇,反应式如下: 
生成的二元醇可进一步被氧化,生成羧酸。
在酸性高锰酸钾溶液中氧化,烯烃分子中碳碳双键完全断裂,CH2=基被氧化成CO2,RCH=基被氧化成羧酸,C=基被氧化成酮。
(2)炔烃与高锰酸钾溶液的反应
炔烃被高锰酸钾氧化时,叁键断裂,RC≡基变成羧酸,CH≡基变成CO2
其中K2CO3是由CO2与KOH作用而生成的。
27.为什么制取溴苯,开始时反应较慢?一般制得的溴苯都不纯净,怎样使它净化?
苯与溴在铁催化下,可生成溴苯:
这个反应实际上起催化作用的不是铁,而是三溴化铁,并进而生成四溴化铁复合离子。这个过程需要一定的时间,致使反应一开始并不明显。
反应完毕后,反应混和物中含有溴、三溴化铁、氢溴酸以及溴苯等。要制得较纯净的溴苯,可先将反应混和物倒入冷水中,由于溴比水重,溴化铁、氢溴酸溶于水,这样可把大量杂质除去。因为溴在溴苯中的溶解度大于在水中的溶解度,所以难以用水将溴完全洗净。为了进一步提纯溴苯,可将不纯的溴苯先放在分液漏斗中用水洗,然后再用稀氢氧化钠溶液洗,NaOH与Br2作用,生成溶于水的NaBr和NaBrO,使溴除去。最后再用水洗,然后加以干燥,即可得到较纯的溴苯。
28.苯进行硝化时,为什么要加入浓硫酸?
过去有人认为硫酸是起着脱水的作用,但是又发现硫酸的浓度约在90%(含水10%)时,反应的速度最大。高于或低于这个浓度,都会使反应速度降低,可见硝化反应的速度主要决定于混和酸中硫酸的浓度,而不在于它的脱水性能。这一点还可从其它事实得到证明。例如。在硝化过程中加入五氧化二磷(强脱水剂),对反应速度并不发生影响。
经过其它实验表明,浓硫酸在反应中不仅是脱水剂,而且与硝酸作用生成硝酰正离子NO2+(或叫做硝基正离子),硝酰正离子(NO2+)是进攻苯环的试剂。由此可见,浓硫酸在硝化反应中除了脱水作用外,还能使硝酸离解,促使硝酸完全转变为硝酰正离子;硝酰正离子和苯生成的正碳离子中间体受HSO4-作用,很容易失去一个质子(H+)完成取代反应过程,生成取代产物硝基苯。
29.在实验室中如何制备无水乙醇?
普通酒精的含量为95.57%(质量),尚含4.43%的水,用直接蒸馏的方法不能把这部分水除掉。因为95.57%的酒精和4.43%的水组成一恒沸混和物,沸点是78.15℃,把这种混和物蒸馏时,气相和液相的组成不发生变化,即乙醇和水始终以这个混和比率同时蒸出。因此,要想进一步除去水,必须采用其它方法。但不能用无水氯化钙来干燥,因为氯化钙和乙醇能形成醇合物。
实验室制备无水乙醇时,在95.57%的酒精中加入新制的生石灰加热回流,使酒精中的水跟氧化钙作用,生成不挥发的氢氧化钙来除去水分。然后再蒸馏,这样可得到99.8%的无水酒精,沸点78.5℃。如果要制备绝对无水的酒精,可以在95.57%的酒精内加苯后蒸馏。因为18.4%乙醇,74.1%苯和7.4%水的混和液的沸点比这三种纯液体的沸点都低,为65℃。在这时收集到的馏分是乙醇、苯和水的混和物,水可全部蒸出。以后在78.5℃收集到的馏分就是绝对酒精。
30.苯酚跟溴水反应时,为什么有时得不到白色的三溴苯酚?
实验中使用饱和的溴水,在常温下立刻发生反应,会生成2、4、6-三溴苯酚的白色沉淀。但有时实验中却出现了黄色沉淀,这是因为在过量的溴水中,三溴苯酚可以继续和次溴酸(溴水中存在)作用生成黄色的2、4、4、6-四溴环己二烯酮。如用2%的氢碘酸(或亚硫酸氢钠溶液)处理,可重新还原为2、4、6-三溴苯酚。
31.为什么不能用金属钠来区别乙醇、乙醛和丙酮?应该选择什么试剂来区别它们?
怎样区别乙醇、乙醛和丙酮?有的读物上把答案写成:“与钠反应能产生氢气的为乙醇;发生银镜反应的是乙醛;余下的一种为丙酮。”这与实际情况是不相符的,因为乙醛和丙酮也能与金属钠反应,有氢气放出。
乙醛和丙酮分子中由于羰基(C=O)的吸电子作用,使α-碳上的氢原子也很活泼,所以它们跟金属钠都能反应。
区别乙醇、乙醛和丙酮时,可以先用银氨溶液作试剂,能发生银镜反应者为乙醛,余者为乙醇和丙酮。再用酸性高锰酸钾溶液区别,乙醇有还原性,能使紫红色的高锰酸钾溶液立即褪色,本身被氧化成乙酸,丙酮则很难被高锰酸钾氧化。
来源:资料来源化学课外编辑整理。

我要回帖

更多关于 苯酚溶于水吗 的文章

 

随机推荐