java语言有会写的吗?

Java是一门面向对象编程语言,是一种广泛使用的计算机编程语言,拥有跨平台、面向对象、泛型编程的特性,广泛应用于企业级Web应用开发和移动应用开发。

Java 语言是一门随时代快速发展的计算机语言程序,其深刻展示了程序编写的精髓,加上其简明严谨的结构及简洁的语法编写为其将来的发展及维护提供了有力保障。【推荐学习:】

我们都知道,java语言可以编写很多东西,安卓基本上用的都是java语言编写的。

可是你知道java是什么语言写的吗?

java是由c语言发展而来的,并且内核是由c编写的,是高级语言。

JAVA虚拟机(JVM)是用C语言和汇编语言编写的。

Java可以算是从C++发展而来的,java不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。

以上就是java是用什么写的?的详细内容,更多请关注php中文网其它相关文章!

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系核实处理。

  • :这里面是与网络有关的类;

  • java.util:这个是系统辅助类,特别是集合类;
  • java.sql:这个是数据库操作的类。

刚开始的时候 JavaAPI 所必需的包是 java 开头的包,javax 当时只是扩展 API 包来说使用。然而随着时间的推移,javax 逐渐的扩展成为 Java API 的组成部分。但是,将扩展从 javax 包移动到 java 包将是太麻烦了,最终会破坏一堆现有的代码。因此,最终决定 javax 包将成为标准API的一部分。

所以,实际上java和javax没有区别。这都是一个名字。

  • 按照流的流向分,可以分为输入流和输出流;
  • 按照操作单元划分,可以划分为字节流和字符流;
  • 按照流的角色划分为节点流和处理流。

Java Io流共涉及40多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java I0流的40多个类都是从如下4个抽象类基类中派生出来的。

  • InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
  • OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

按操作方式分类结构图:

按操作对象分类结构图:

  • BIO:Block IO 同步阻塞式 IO,就是我们平常使用的传统 IO,它的特点是模式简单使用方便,并发处理能力低。
  • NIO:Non IO 同步非阻塞 IO,是传统 IO 的升级,客户端和服务器端通过 Channel(通道)通讯,实现了多路复用。
  • BIO (Blocking I/O): 同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。在活动连接数不是特别高(小于单机1000)的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单,也不用过多考虑系统的过载、限流等问题。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
  • NIO提供了与传统BIO模型中的 Socket 和 ServerSocket 相对应的 SocketChannel 和 ServerSocketChannel 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞I/O来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发
  • AIO (Asynchronous I/O): AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的IO模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。AIO 是异步IO的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO操作本身是同步的。查阅网上相关资料,我发现就目前来说 AIO 的应用还不是很广泛,Netty 之前也尝试使用过 AIO,不过又放弃了。

③. Files的常用方法都有哪些?

①. 什么是反射机制?

JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。

  • **静态编译:**在编译时确定类型,绑定对象
  • **动态编译:**运行时确定类型,绑定对象
  • 优点: 运行期类型的判断,动态加载类,提高代码灵活度。
  • 缺点: 性能瓶颈:反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接的java代码要慢很多。

③. 反射机制的应用场景有哪些?

反射是框架设计的灵魂。

在我们平时的项目开发过程中,基本上很少会直接使用到反射机制,但这不能说明反射机制没有用,实际上有很多设计、开发都与反射机制有关,例如模块化的开发,通过反射去调用对应的字节码;动态代理设计模式也采用了反射机制,还有我们日常使用的 Spring/Hibernate 等框架也大量使用到了反射机制。

举例:①我们在使用JDBC连接数据库时使用Class.forName()通过反射加载数据库的驱动程序;②Spring框架也用到很多反射机制,最经典的就是xml的配置模式。Spring 通过 XML 配置模式装载 Bean 的过程:1) 将程序内所有 XML 或 Properties 配置文件加载入内存中; 2)Java类里面解析xml或properties里面的内容,得到对应实体类的字节码字符串以及相关的属性信息; 3)使用反射机制,根据这个字符串获得某个类的Class实例; 4)动态配置实例的属性

④. Java获取反射的三种方法

1.通过new对象实现反射机制 2.通过路径实现反射机制 3.通过类名实现反射机制

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

网络编程的面试题可以查看这篇文章重学TCP/IP协议和三次握手四次挥手,内容不仅包括TCP/IP协议和三次握手四次挥手的知识,还包括计算机网络体系结构,HTTP协议,get请求和post请求区别,session和cookie的区别等,欢迎大家阅读。

字符型常量和字符串常量的区别

  1. 形式上: 字符常量是单引号引起的一个字符 字符串常量是双引号引起的若干个字符
  2. 含义上: 字符常量相当于一个整形值(ASCII值),可以参加表达式运算 字符串常量代表一个地址值(该字符串在内存中存放位置)
  3. 占内存大小 字符常量只占一个字节 字符串常量占若干个字节(至少一个字符结束标志)

字符串常量池位于堆内存中,专门用来存储字符串常量,可以提高内存的使用率,避免开辟多块空间存储相同的字符串,在创建字符串时 JVM 会首先检查字符串常量池,如果该字符串已经存在池中,则返回它的引用,如果不存在,则实例化一个字符串放到池中,并返回其引用。

String 是最基本的数据类型吗

这是很基础的东西,但是很多初学者却容易忽视,Java 的 8 种基本数据类型中不包括 String,基本数据类型中用来描述文本数据的是 char,但是它只能表示单个字符,比如 ‘a’,‘好’ 之类的,如果要描述一段文本,就需要用多个 char 类型的变量,也就是一个 char 类型数组,比如“你好” 就是长度为2的数组 char[] chars = {‘你’,‘好’};

但是使用数组过于麻烦,所以就有了 String,String 底层就是一个 char 类型的数组,只是使用的时候开发者不需要直接操作底层数组,用更加简便的方式即可完成对字符串的使用。

  • 不变性:String 是只读字符串,是一个典型的 immutable 对象,对它进行任何操作,其实都是创建一个新的对象,再把引用指向该对象。不变模式的主要作用在于当一个对象需要被多线程共享并频繁访问时,可以保证数据的一致性。

  • 常量池优化:String 对象创建之后,会在字符串常量池中进行缓存,如果下次创建同样的对象时,会直接返回缓存的引用。

String为什么是不可变的吗?

简单来说就是String类利用了final修饰的char类型数组存储字符,源码如下图所以:

 
 
 
 
 
 
 
 
 
 

String真的是不可变的吗?

我觉得如果别人问这个问题的话,回答不可变就可以了。 下面只是给大家看两个有代表性的例子:

1) String不可变但不代表引用不可以变

 
 
 
 
 
 
 
 
 
 

实际上,原来String的内容是不变的,只是str由原来指向"Hello"的内存地址转为指向"Hello World"的内存地址而已,也就是说多开辟了一块内存区域给"Hello World"字符串。

2) 通过反射是可以修改所谓的“不可变”对象

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

用反射可以访问私有成员, 然后反射出String对象中的value属性, 进而改变通过获得的value引用改变数组的结构。但是一般我们不会这么做,这里只是简单提一下有这个东西。

不一样,因为内存的分配方式不一样。String str="i"的方式,java 虚拟机会将其分配到常量池中;而 String str=new String(“i”) 则会被分到堆内存中。

两个对象,一个是静态区的"xyz",一个是用new创建在堆上的对象。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

String 类的常用方法都有那些?

  • indexOf():返回指定字符的索引。
  • charAt():返回指定索引处的字符。
  • trim():去除字符串两端空白。
  • split():分割字符串,返回一个分割后的字符串数组。
  • length():返回字符串长度。

HashMap 内部实现是通过 key 的 hashcode 来确定 value 的存储位置,因为字符串是不可变的,所以当创建字符串时,它的 hashcode 被缓存下来,不需要再次计算,所以相比于其他对象更快。

String中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder是StringBuilder与StringBuffer的公共父类,定义了一些字符串的基本操作,如expandCapacity、append、insert、indexOf等公共方法。StringBuffer对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder并没有对方法进行加同步锁,所以是非线程安全的。

每次对String 类型进行改变的时候,都会生成一个新的String对象,然后将指针指向新的String 对象。StringBuffer每次都会对StringBuffer对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用StirngBuilder 相比使用StringBuffer 仅能获得10%~15% 左右的性能提升,但却要冒多线程不安全的风险。

如果要操作少量的数据用 = String

单线程操作字符串缓冲区 下操作大量数据 = StringBuilder

多线程操作字符串缓冲区 下操作大量数据 = StringBuffer

装箱:将基本类型用它们对应的引用类型包装起来;

拆箱:将包装类型转换为基本数据类型;

Java 是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java 为每一个基本数据类型都引入了对应的包装类型(wrapper class),int 的包装类就是 Integer,从 Java 5 开始引入了自动装箱/拆箱机制,使得二者可以相互转换。

Java 为每个原始类型提供了包装类型:

对于对象引用类型:==比较的是对象的内存地址。
对于基本数据类型:==比较的是值。

如果整型字面量的值在-128到127之间,那么自动装箱时不会new新的Integer对象,而是直接引用常量池中的Integer对象,超过范围 a1==b1的结果是false

 
 
 
 
 
 
 
 
 
 

集合框架:用于存储数据的容器。

集合框架是为表示和操作集合而规定的一种统一的标准的体系结构。
任何集合框架都包含三大块内容:对外的接口、接口的实现和对集合运算的算法。

接口:表示集合的抽象数据类型。接口允许我们操作集合时不必关注具体实现,从而达到“多态”。在面向对象编程语言中,接口通常用来形成规范。

实现:集合接口的具体实现,是重用性很高的数据结构。

算法:在一个实现了某个集合框架中的接口的对象身上完成某种有用的计算的方法,例如查找、排序等。这些算法通常是多态的,因为相同的方法可以在同一个接口被多个类实现时有不同的表现。事实上,算法是可复用的函数。
它减少了程序设计的辛劳。

集合框架通过提供有用的数据结构和算法使你能集中注意力于你的程序的重要部分上,而不是为了让程序能正常运转而将注意力于低层设计上。
通过这些在无关API之间的简易的互用性,使你免除了为改编对象或转换代码以便联合这些API而去写大量的代码。 它提高了程序速度和质量。

集合的特点主要有如下两点:

  • 对象封装数据,对象多了也需要存储。集合用于存储对象。

  • 对象的个数确定可以使用数组,对象的个数不确定的可以用集合。因为集合是可变长度的。

③. 集合和数组的区别

  • 数组是固定长度的;集合可变长度的。

  • 数组可以存储基本数据类型,也可以存储引用数据类型;集合只能存储引用数据类型。

  • 数组存储的元素必须是同一个数据类型;集合存储的对象可以是不同数据类型。

数据结构:就是容器中存储数据的方式。

对于集合容器,有很多种。因为每一个容器的自身特点不同,其实原理在于每个容器的内部数据结构不同。

集合容器在不断向上抽取过程中,出现了集合体系。在使用一个体系的原则:参阅顶层内容。建立底层对象。

④. 使用集合框架的好处

  1. 提供了高性能的数据结构和算法,使编码更轻松,提高了程序速度和质量;
  2. 允许不同 API 之间的互操作,API之间可以来回传递集合;
  3. 可以方便地扩展或改写集合,提高代码复用性和可操作性。
  4. 通过使用JDK自带的集合类,可以降低代码维护和学习新API成本。

⑤. 常用的集合类有哪些?

Map接口和Collection接口是所有集合框架的父接口:

  • List:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。
  • Set:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。

Map是一个键值对集合,存储键、值和之间的映射。 Key无序,唯一;value 不要求有序,允许重复。Map没有继承于Collection接口,从Map集合中检索元素时,只要给出键对象,就会返回对应的值对象。

⑦. 集合框架底层数据结构

  • TreeSet(有序,唯一): 红黑树(自平衡的排序二叉树。)
  • HashMap: JDK1.8之前HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突).JDK1.8以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间
  • LinkedHashMap:LinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构即由数组和链表或红黑树组成。另外,LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。
  • HashTable: 数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的
  • TreeMap: 红黑树(自平衡的排序二叉树)

⑧. 哪些集合类是线程安全的?

  • vector:就比arraylist多了个同步化机制(线程安全),因为效率较低,现在已经不太建议使用。在web应用中,特别是前台页面,往往效率(页面响应速度)是优先考虑的。
  • statck:堆栈类,先进后出。

是java集合的一种错误检测机制,当多个线程对集合进行结构上的改变的操作时,有可能会产生 fail-fast 机制。

例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast机制。

原因:迭代器在遍历时直接访问集合中的内容,并且在遍历过程中使用一个 modCount 变量。集合在被遍历期间如果内容发生变化,就会改变modCount的值。每当迭代器使用hashNext()/next()遍历下一个元素之前,都会检测modCount变量是否为expectedmodCount值,是的话就返回遍历;否则抛出异常,终止遍历。

  1. 在遍历过程中,所有涉及到改变modCount值得地方全部加上synchronized。

⑩. 怎么确保一个集合不能被修改?

 
 
 
 
 
 
 
 
 
 

Iterator 接口提供遍历任何 Collection 的接口。我们可以从一个 Collection 中使用迭代器方法来获取迭代器实例。迭代器取代了 Java 集合框架中的 Enumeration,迭代器允许调用者在迭代过程中移除元素。

Iterator 怎么使用?有什么特点?

 
 
 
 
 
 
 
 
 
 

Iterator 的特点是只能单向遍历,但是更加安全,因为它可以确保,在当前遍历的集合元素被更改的时候,就会抛出 ConcurrentModificationException 异常。

如何边遍历边移除 Collection 中的元素?

 
 
 
 
 
 
 
 
 
 

一种最常见的错误代码如下:

 
 
 
 
 
 
 
 
 
 
  • ListIterator 实现 Iterator 接口,然后添加了一些额外的功能,比如添加一个元素、替换一个元素、获取前面或后面元素的索引位置。

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么?

  1. for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。

  2. 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。

  3. foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。

  • 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。
  • ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。
  • ArrayList 在顺序添加一个元素的时候非常方便。
  • 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。
  • 插入元素的时候,也需要做一次元素复制操作,缺点同上。

ArrayList 比较适合顺序添加、随机访问的场景。

如何实现数组和 List 之间的转换?

 
 
 
 
 
 
 
 
 
 
  • 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。
  • 随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。
  • 增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。
  • 内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。
  • 线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全;

综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。

补充:数据结构基础之双向链表

双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。

这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合

Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。

Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。

ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。

LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快

多线程场景下如何使用 ArrayList?

ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样:

 
 
 
 
 
    •  
       
       
       
       
       
       
       
       
       
       
       
       
       
       
        • 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。

          List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。

          Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。

          另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。

          Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。
          List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变

          HashSet如何检查重复?HashSet是如何保证数据不可重复的?

           
           
           
           
           
           
           
           
           
           
          1. 如果两个对象相等,则hashcode一定也是相同的
          2. 两个对象相等,对两个equals方法返回true
          3. 两个对象有相同的hashcode值,它们也不一定是相等的
          4. 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖
          5. hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。
          1. ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同
          2. ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同
          调用put()向map中添加元素 调用add()方法向Set中添加元素
          HashSet使用成员对象来计算hashcode值,对于两个对象来说hashcode可能相同,所以equals()方法用来判断对象的相等性,如果两个对象不同的话,那么返回false
          HashMap相对于HashSet较快,因为它是使用唯一的键获取对象
          • 相同点:都是返回第一个元素,并在队列中删除返回的对象。
     
     
     
     
     
     
     
     
     
     

    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

    HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

    1. 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标
    2. 存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中
    3. 获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。
    4. 理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。

    需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn)

    在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。

    JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

    相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

    JDK1.8主要解决或优化了一下问题:

  1. 引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考
  2. 解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。
数组 + 链表 + 红黑树
直接集成到了扩容函数resize()
扰动处理 = 9次扰动 = 4次位运算 + 5次异或运算 扰动处理 = 2次扰动 = 1次位运算 + 1次异或运算
无冲突时,存放数组;冲突时,存放链表 无冲突时,存放数组;冲突 & 链表长度 8:树化并存放红黑树
头插法(先讲原位置的数据移到后1位,再插入数据到该位置) 尾插法(直接插入到链表尾部/红黑树)
扩容后存储位置的计算方式 按照扩容后的规律计算(即扩容后的位置=原位置 or 原位置 + 旧容量)

hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。

putVal方法执行流程图

 
 
 
 
 
 
 
 
 
 

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

④. HashMap的扩容操作是怎么实现的?

①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;

②.每次扩展的时候,都是扩展2倍;

③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。

在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上

 
 
 
 
 
      • ⑤. HashMap是怎么解决哈希冲突的?

        答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行;

        Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数

        所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。

        当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)

        在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突:

        (即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化

        上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK

        
         
         
         
         
         
        
         
         
         
         
         

        这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动)

        通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn);

        简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的:

        1. 使用链地址法(使用散列表)来链接拥有相同hash值的数据;
        2. 使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;
        3. 引入红黑树进一步降低遍历的时间复杂度,使得遍历更快;

        ⑥. 能否使用任何类作为 Map 的 key?

        可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点:

        • 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。

        答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率

        1. 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况
        2. 内部已重写了equals()hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况;
        1. 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞;
        2. 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性

        30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置;

        1. HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均;
        2. 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题;

        ⑩. HashMap 的长度为什么是2的幂次方

        为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。

        这个算法应该如何设计呢?

        我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。

        那为什么是两次扰动呢?

        答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的;

        1. 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它;
        2. **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。
        3. 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。
        4. 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。

        对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。

        1. ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。)
  • HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;
  • 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化)整个看起来就像是优化过且线程安全的 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。

  1. 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;

JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。

附加源码,有需要的可以看看

插入元素过程(建议去看看源码):

如果相应位置的Node还没有初始化,则调用CAS插入相应的数据;

 
 
 
 
 
 
 
 
 
 

如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;

 
 
 
 
 
 
 
 
 
 
  1. 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;
  2. 如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount;
  • Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。
  • Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。

对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。

一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort().

  • java.util.Collection 是一个集合接口(集合类的一个顶级接口)。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java 类库中有很多具体的实现。Collection接口的意义是为各种具体的集合提供了最大化的统一操作方式,其直接继承接口有List与Set。
  • Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序、搜索以及线程安全等各种操作。

TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。

第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较;

第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。

Error 类型的错误通常为虚拟机相关错误,如系统崩溃,内存不足,堆栈溢出等,编译器不会对这类错误进行检测,JAVA 应用程序也不应对这类错误进行捕获,一旦这类错误发生,通常应用程序会被终止,仅靠应用程序本身无法恢复;

Exception 类的错误是可以在应用程序中进行捕获并处理的,通常遇到这种错误,应对其进行处理,使应用程序可以继续正常运行。

2. 运行时异常和一般异常(受检异常)区别是什么?

运行时异常包括 RuntimeException 类及其子类,表示 JVM 在运行期间可能出现的异常。 Java 编译器不会检查运行时异常。

RuntimeException异常和受检异常之间的区别:是否强制要求调用者必须处理此异常,如果强制要求调用者必须进行处理,那么就使用受检异常,否则就选择非受检异常(RuntimeException)。一般来讲,如果没有特殊的要求,我们建议使用RuntimeException异常。

3. JVM 是如何处理异常的?

在一个方法中如果发生异常,这个方法会创建一个异常对象,并转交给 JVM,该异常对象包含异常名称,异常描述以及异常发生时应用程序的状态。创建异常对象并转交给 JVM 的过程称为抛出异常。可能有一系列的方法调用,最终才进入抛出异常的方法,这一系列方法调用的有序列表叫做调用栈。

JVM 会顺着调用栈去查找看是否有可以处理异常的代码,如果有,则调用异常处理代码。当 JVM 发现可以处理异常的代码时,会把发生的异常传递给它。如果 JVM 没有找到可以处理该异常的代码块,JVM 就会将该异常转交给默认的异常处理器(默认处理器为 JVM 的一部分),默认异常处理器打印出异常信息并终止应用程序。

Java 中的异常处理除了包括捕获异常和处理异常之外,还包括声明异常和拋出异常,可以通过 throws 关键字在方法上声明该方法要拋出的异常,或者在方法内部通过 throw 拋出异常对象。

throws 关键字和 throw 关键字在使用上的几点区别如下

  • throw 关键字用在方法内部,只能用于抛出一种异常,用来抛出方法或代码块中的异常,受查异常和非受查异常都可以被抛出。
  • throws 关键字用在方法声明上,可以抛出多个异常,用来标识该方法可能抛出的异常列表。一个方法用 throws 标识了可能抛出的异常列表,调用该方法的方法中必须包含可处理异常的代码,否则也要在方法签名中用 throws 关键字声明相应的异常。
  • final可以修饰类、变量、方法,修饰类表示该类不能被继承、修饰方法表示该方法不能被重写、修饰变量表示该变量是一个常量不能被重新赋值。
  • finally一般作用在try-catch代码块中,在处理异常的时候,通常我们将一定要执行的代码方法finally代码块中,表示不管是否出现异常,该代码块都会执行,一般用来存放一些关闭资源的代码。
  • finalize是一个方法,属于Object类的一个方法,而Object类是所有类的父类,Java 中允许使用 finalize()方法在垃圾收集器将对象从内存中清除出去之前做必要的清理工作。

引起该异常的原因是 JVM 或 ClassLoader 尝试加载某类时在内存中找不到该类的定义,该动作发生在运行期间,即编译时该类存在,但是在运行时却找不到了,可能是变异后被删除了等原因导致;

动态加载类到内存的时候,通过传入的类路径参数没有找到该类,就会抛出该异常;另一种抛出该异常的可能原因是某个类已经由一个类加载器加载至内存中,另一个加载器又尝试去加载它。

更为严格的说法其实是:try只适合处理运行时异常,try+catch适合处理运行时异常+普通异常。也就是说,如果你只用try去处理普通异常却不加以catch处理,编译是通不过的,因为编译器硬性规定,普通异常如果选择捕获,则必须用catch显示声明以便进一步处理。而运行时异常在编译时没有如此规定,所以catch可以省略,你加上catch编译器也觉得无可厚非。

理论上,编译器看任何代码都不顺眼,都觉得可能有潜在的问题,所以你即使对所有代码加上try,代码在运行期时也只不过是在正常运行的基础上加一层皮。但是你一旦对一段代码加上try,就等于显示地承诺编译器,对这段代码可能抛出的异常进行捕获而非向上抛出处理。如果是普通异常,编译器要求必须用catch捕获以便进一步处理;如果运行时异常,捕获然后丢弃并且+finally扫尾处理,或者加上catch捕获以便进一步处理。

至于加上finally,则是在不管有没捕获异常,都要进行的“扫尾”处理。

答:会执行,在 return 前执行。

注意:在 finally 中改变返回值的做法是不好的,因为如果存在 finally 代码块,try中的 return 语句不会立马返回调用者,而是记录下返回值待 finally 代码块执行完毕之后再向调用者返回其值,然后如果在 finally 中修改了返回值,就会返回修改后的值。显然,在 finally 中返回或者修改返回值会对程序造成很大的困扰,C#中直接用编译错误的方式来阻止程序员干这种龌龊的事情,Java 中也可以通过提升编译器的语法检查级别来产生警告或错误。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

请问执行此段代码的输出是什么?

输出:ExampleA。(根据里氏代换原则[能使用父类型的地方一定能使用子类型],抓取 ExampleA 类型异常的 catch 块能够抓住 try 块中抛出的 ExampleB 类型的异常)

面试题 - 说出下面代码的运行结果。(此题的出处是《Java 编程思想》一书)

 
 
 
 
 
可以用任何可以书写人类辨识的字母的软件来写
 如果觉的我答案有用,请点赞。

我要回帖

更多关于 java语言是纯什么编程语言 的文章

 

随机推荐