有皮下气孔跟模具气孔水路有关吗

原标题:铸件产生皮下气孔的六夶原因

对于铸件产生的皮下气孔令许多加工铸件的操作人员感到十分苦恼。皮下气孔的产生大多因为铸造过程中各环节或者工序由于操作不当而产生的综合反应。产生铸件皮下气孔的成因相对复杂而且影响因素有很多,所以需要操作人员特别引起重视下面就来具体介绍一下铸件产生皮下气孔的六大原因:

1、进行铸件的时候避免选用含钛、含铝高的原材料以及高合金钢、不锈钢等。

2、对于锈蚀、氧化嚴重、油污的原材料需要进行清理后再使用。

3、对于材料表面有潮湿、带水的情况需要干燥后使用。

4、材料的长度要控制在750px—1000px左右

1、原材料在装炉时,一定要紧实减少空间,主要是为了减少铁水吸气和氧化

2、在铁水熔化过程中,要进行检查避免铁水长时间与空氣接触而产生吸气和氧化。

3、熔化好的铁水高温等待时间不超过10—15分钟,避免成为“死水”的可能性

4、避免使用不符合标准的增碳剂。

1、使用前需要经过300—400℃的烘烤去除其内部吸附的水分以及结晶水。

2、孕育剂的力度在5—10mm含铝量要<1%。

1、大、小包一定要烘干、烘透禁止使用湿包装,严禁使用铁水烫包代替烘干

2、提高浇注温度,高温快浇浇注温度提高30—50℃,可以使气孔发生率大大降低浇注时讓铁水充满直交道,中间不断流抵制界面气体侵入。

3、小包铁水温度低于1350℃应回炉提温后使用。

4、加强挡渣、蔽渣氧化皮要及时进荇清除,防止其带入型腔

1、严格控制型砂水分不大于)期待您的加入!

核心提示:简单来说气孔分两類,一类是析出性气孔即铝液在凝固过程中因气体溶解度的变化而析出,老大在这方面说的很详细;另一类就是卷入性气孔与铝液无關,主要是铝液填充过程中因紊流包卷在产品中的空气及涂料或型腔内未干的水分卷入性气孔主要与浇排系统的合理性密切相关,只有塗料和水纯属操作不当。至于说在喷丸后出现应该主要与高速转换点的位置关联密切。

问题1:材料ACD12铝合金压铸件在机加工或喷砂后出現较多气孔的问题这一技术上问题困扰着我们

回复:1 设备抽真空设备是什么设备啊?

压铸件的气孔问题好像还没有办法解决只能通过调節压铸参数模温和修改相关的模具气孔温度使气孔在一个合理的等级范围 

1.脱模剂是否噴得太多? 因脱模济发气量大,用量过多时浇注前未燃尽,使挥发气体被包在铸件表层所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。选用发气量小的脱模济用量薄洏均匀,燃净后合模 

2未经常清理溢流槽和排气道? 

3开模是否过早? 是否对模具气孔进行了预热?各部位是否慢慢均匀升温使型腔、型芯表媔温度为150℃~200℃。

4刚开始模温低时生产的产品有无隔离? 

5如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法加热 

6是否取幹净的铝液,有无将氧化层注入压室 7倒料时,是否将勺子靠近压室注入口避免飞溅、氧化或卷入空气降温等。 

8金属液一倒入压室是否即进行压射,温度有无降低了。 

9冷却与开模是否根据不同的产品选择开模时间? 

10有无因怕铝液飞出(飞水)不敢采用正常压铸压仂?更不敢偿试适当增加比压?

11操作员有无严格遵守压铸工艺 

12有无采用定量浇注?如何确定浇注量? 

二.机(设备、模具气孔、工装)的因素: 主要是指模具气孔质量、设备性能 

1压铸模具气孔设计是否合理,会否导致有气孔?压铸模具气孔方面的原因: 

1.浇口位置的选择和导流形狀是否不当导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度避免涡流包气) 

2.浇道形状有无设计不良? 

3.内浇口速度有無太高,产生湍流?

5.模具气孔型腔位置是否太深? 

6.机械加工余量是否太大?穿透了表面致密层露出皮下气孔?压铸件的机械切削加工余量應取得小一些一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来嘚面基本看不到气孔的因为有硬质层的保护。 

2排气孔是否被堵死气排不出来? 

3冲头润滑剂是否太多或被烧焦?这也是产生气体的来源之一 

4浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 

5内浇口位置是否不合理通过内浇口后的金属立即撞击型壁、产生渦流,气体被卷入金属流中 ? 6排气道位置不对造成排气条件不良 ?

5溢气道面积是否够大是否被阻塞,位置是否位於最后充填的地方? 模具氣孔排气部位是否经常清理避免因脱模剂堵塞而失去排气作用。 

6模温是否太低? 7流道转弯是否圆滑?适当加大内浇口?

8有无在深腔处开设排气塞或采用镶拼形式增加排气? 

9有无因压铸设计不合理形成有难以排气的部位? 

10溢流口截面积总和有无小于内浇口截面积总和的60%排渣效果差? 

11有无在在满足成型良好的条件下,增大内浇口厚度以降低填充速度 

12有无内浇口速度过高,湍流运动过剧金属流卷入气体严重 ? 

13有無内浇口截面积过小,喷射严重 ?

14有无顺序填充以利于型腔气体排出直浇道和横浇道有足够的长度? 

1有无做好供应商的原材料的成分控制?鐵含量多少(要求在0.7以下) 

2铝的纯度有无保证? 

3二次料(水口料)使用是否过多并且没有做好除渣动作?

4又无在生产过程中在铝液内加入过多废料渣包浇注时连同氧化皮一起倒入? 

5本公司有无控制废材料的二次使用比例?如何执行?谁检查? 

6重要客户产品的铝液中是否可以加入废料? 

7试试改变新料与回炉料的比例 

四.方法的因素: 主要指压铸参数、操作工艺。 

1有无根据不同的产品选择工艺参数(压铸铝液温度630-670?C)合理选择压铸工艺参数,特别是压射速度调整高速切换起点。 

2有无减少脱模济含水量有无采用发气量小的脱模剂? 

3合金熔炼温度昰否过高 

4铝液温度如何测定?温度计准确否

5有无根据产品及时调整压射速度和慢压射速度快压射速度的转换点? 

6有无大机器压铸小零件压室的充满度过小?

五.环境因素: 压铸环境是否空气湿度大

一般情况下,周围空气中的氢气含量并不多但空气中如果相对湿度大,則会增加铝液中气体的溶解度形成季节性气孔,如在雨季由于空气湿度大,铝合金熔炼时针孔产生的现象就严重些当然,空气湿度夶时铝合金锭 、熔炼设备、工具等也会因空气潮湿而增加表面水分的吸附量,因此更应注意采取有力预热烘干防护措施以减少气孔的產生。 

名词解释与铝压铸小资料

1气孔:特征--铸件表皮下聚集气体鼓胀所形成的泡。 

2针孔:通常是指铸件中小于1mm的析出性气孔多呈圆形,不均匀分布在铸件整个断面上特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征针孔又可鉯分为三类①,即:(1) 点状针孔(2) 网状针孔(3) 综合性气孔: 

3精炼铝合金在熔炼过程中去除非金属夹杂物(各种固态氧化物)和气体的工序,一般称為“精炼” 

4压铸工艺上的“时间” 是填充时间、增压建压时间、持压时间及留模时间,“时间”在压铸工艺上是至关重要的

⑴水气:咜来自炉气,未经充分干燥的炉料、精炼剂、复盖剂、变质剂未经充分干燥的炉衬、坩埚及工具上的涂料,以及残留在坩埚、工具和炉料上的含水溶剂这些水气与铝反应为: 2AL+3H2O→←AL2O3+6H 产生氢,氢以原子态进入铝液 

⑵油污来自带有油脂的炉料及工具,油脂与铝反应生成氢 

⑶炉料上带有含水腐蚀物。减少铝合金液吸收气体合金原材料应妥善存放,防止受潮使用前需充分预热烘干;对熔炼坩埚、工具都应充分预热以去除水汽后再使用。为了清除铝合金液中的气体所有铝合金液浇注之前都必须进行除气精炼。 

3通氮精炼法(又称惰性气体除气法) 基本原理:将氮气通过一定的工艺装置进入铝液的底部氮以气泡的形式从铝液的底部向上浮起时,由于在气泡和铝液接触的界面上存茬氢的分压差气泡内氢的分压很低,在氢分压趋于平衡的过程中合金液中的氢就不断地进入气泡,当气泡上升到液面后氢即随之逸叺大气中,气泡在上升的过程中同时吸附氧化渣及其固定杂质,使之一起上浮到液面惰性气体在使用前应将其冷凝脱水,以防止水分進入铝液精炼质量好,气孔必然少 

4模具气孔温度要获得质量稳定的优质铸件,必须将模具气孔温度严格控制在最佳的工艺范围内这僦必须应用模具气孔冷却加热装置,以保证模具气孔在恒定温度范围内工作铝合金:200-260℃。

5铝合金生产实践证明氢是唯一能大量溶解于鋁或铝合金中的气体,铝合金中溶解度最大的气体

6铝合金精练时加入精练剂要按比例,精练剂一般是铝合金0.3%除气时间不够;方法一:采用无缝钢管,插入铝液底部20cm处用氮气或氩气喷吹精练剂精练喷完后,氮气或氩气再吹15-20分钟(熔炼铝合金 5吨情况下)精练后镇静10-15分钟扒掉铝渣 ,用过滤网过滤浇注; 

7各种铸造有色金属都有吸收气体的特性处在熔炼或保温过程中的合金液,随合金温度的升高所吸收气體的溶解度迅速增加。因此除正确控制整个熔炼浇注工艺外,应尽量减少合金液在高温下保温避免合金液过热,对极易吸合的合金采取在覆盖剂保护下熔炼。这样才能避免气孔、针孔的产生

8为了减少铝合金的氧化,除选择适当的熔炼用炉外压铸生产中应采用保温爐保温,切忌边熔化边压铸生产,尽可能减少搅拌保持液面氧化膜完整,避免合金液不必要的过热和尽量缩短合金在保温炉中的时间

9茬压铸时压室型腔内的部分气体(约30%)不能从型腔内排出,而被卷入金属液中,在填充过程中会产生反压力返使流速下降,造成铸件冷隔、欠铸、氣孔、疏松等缺陷。为了消除由此而产生的铸件缺陷故模具气孔上一定要设置排气槽。排气槽一般与溢流槽配合设置在溢流槽后端,茬有些情况下也可在型腔的部位单独布置排气槽 

10合金熔化温度越高,熔化时间和熔化后铝液保持时间越长氢在铝液中扩散就越充分,鋁液吸氢量就越大出现针孔的几率就越大。有人曾做试验铝液存放时间越长,铝合金内含气量近似成比例增加 

11针孔是铝合金铸件中嫆易出现的且对铸件品质造成一定影响的一种铸造缺陷,氢是造成针孔的主要原因(有的资料介绍铝液中所溶解的气体中80%-90%是氢),而氢嘚主要来源是水蒸气分解所产生的因此,铝合金在熔炼过程中造成水蒸气产生的原因也就是直接影响针孔形成的主要因素。

12铝合金熔煉时由于氢气溶解到铝液中需要一个过程,因此加强熔炼过程的控制对控制铝合金吸气量是大有文章可做的。生产实践表明铝液吸氫是在表面进行的,它不仅与铝液表面的分压有关还与合金熔炼温度、熔炼时间等有较大的关系。合金熔化温度越高熔化时间和熔化後铝液保持时间越长,氢在铝液中扩散就越充分铝液吸氢量就越大,出现针孔的几率就越大有人曾做试验,铝液存放时间越长铝合金内含气量近似成比例增加。因此我们在大量生产条件下,为了减少铝合金熔炼时吸收氢气一定要严格执行铝合金熔炼工艺规程。 

13金屬炉料或回炉料带入的油污、有机物、盐类熔剂等与铝液反应也能生成氢 

14目前,为了消除铝合金铸件针孔最常用的办法是在熔化过程Φ用氯盐和氯化物除气,用氯气、氮气除气用真空除气,用超声波除气过滤除气等方法。采用氯盐和氯化物除气剂除气时要用钟罩將除气剂压入坩埚底部100mm,沿坩埚直径1/3处(距坩埚内壁)的圆周匀速移动为了不使铝液大量喷溅,除气剂可分批加入除气结束除渣。 

15表媔气孔、气泡可通过喷砂发现内部气孔、气泡可通过X光透视或机械加工发现气孔、气泡在X光底片上呈黑色。

16除氢的“防、排、除” 防”:就是要防止水分及各种污物进入坩埚或熔炉中 “排”:就是要排除铝液中的氧化夹杂和氢气,因为只有有效去除悬浮在铝液中的弥散狀的夹杂物(主要是Al2O3)才能防止铝液增氢,消除去氢障碍从而获得纯净的铝液,浇出合格的铸件“渣既尽,气必除”说的就是这个意思 “溶”:就是要使铝液中的氢在凝固时能部分地或者全部地固溶在合金组织中,不致在铸件中形成气孔 

17据介绍模具气孔最佳温度應控制在浇人温度的40%。铝合金压铸模温度为80℃模具气孔温度在这一范围内有利于获得优质高产铸件。顺序填充有利于型腔气体排出矗浇道和横浇道有足够的长度>50mm。以利于合金液平稳流动和气体有机会排出可改变浇口厚度、浇口方向、在形成气孔的位置设置溢流槽、排气槽。溢流品截面积总和不能小于内浇口截面积总和的60%否则排渣效果差。 

18减少铝水中的含气量防止大量的气体在铝合金凝固时析出媔产生气孔,这就是铝合金熔炼过程中精炼除气的目的如果在铝液中本来就减少了气体的含量,那么凝固时析出气体量就会减少因而產生的气泡也就变少,并显着减少因此,铝合金的精炼是非常重要的工艺手段精炼质量好,气孔必然少精炼质量差,气孔必然多保证精炼质量的措施是先用良好的精炼剂,良好的精炼剂是在660℃左可以起反应产生气泡所产生气泡不太剧烈,而是均匀不断的产生气泡通过物理吸附作用,这些气泡与铝液充分接触愈长愈好,一般要有6-8分钟的冒泡时间当铝合金冷却到300℃时,氢在铝合金中的溶解度仅為0.001 cm3/100g 以下此时仅为液态时的1/700,这种凝固后氢气析出而产生的气孔是分散的细小的针孔,这不影响气和加工表面肉眼基本看不见。而在鋁液凝固时因氢气析出所产生产气泡比较大多在铝液最后凝固的心部,虽然也分散但这些气泡常常导致渗漏。严重时常导致工件报废

20铝合金在熔炼时,要力求做到快速熔炼缩短高温下停留的时间参数选择不当,铝水压铸充型速度过快使型腔中气体不能完全及时平穩的挤出型腔,而被铝液的液流卷入铝液中因铝合金表面快速冷却,被包在凝固的铝合金外壳中无法排出形成了较大的气孔。这种气孔往往在工件表面之下铝水进口比最后汇合处少,呈梨形或椭圆状在最后凝固处多又大。对于这种气孔应调整充型速度使铝合金液鋶平稳推进,不产生高速卷气

问题2:我在用旧铝敞口铸造时总是出现气孔,有什么办法解决

回复:你这个应该是铸造过程中氧化没处悝好的缘故 压铸件中的气孔无法避免,关键是要满足产品的要求尽量减少气孔,或者将气孔分布到不影响产品品质的部位;改善模具气孔、更换脱模剂、合金液除气、工艺调整改善、喷涂量控制、增加真空机等方式可以有效的减少气孔 压铸铝合金在熔炼时就要尽量保证其铝液精炼和除气精确,保证铝液质量对于ADC12在熔融之后铝液温度要控制在730°C以上进行精炼除气处理,用氮气将精炼剂和除气剂均匀的吹叺铝液内时间大概5-10分钟,静置后放水进行用氩气除氢处理大概5-10分钟。

我要回帖

更多关于 模具气孔 的文章

 

随机推荐