如果导弹打航母的数学模型分别去打战机和航母,哪个最有可能被击中

不得其解!为何导弹能击中飞得快的战机,却打不中跑的慢的航母?不得其解!为何导弹能击中飞得快的战机,却打不中跑的慢的航母?迷彩虎百家号今天来给军迷们讲一下导弹、战机、航母之间的复杂关系,总的来说就是为啥导弹发射之后,扑通一声飞机就没了,而一旦攻击航母,导弹却扑通一声就沉水了,这三者之间的关系微妙而有趣,且听小编细细道来。第一我们得明白一个道理,那就是导弹攻击的准确与否,并不能用攻击对象的速度来衡量,举个例子,导弹是矛,战机、航母是盾,两者是攻守的关系,速度很重要,但力量、灵活性也很重要。而从攻击方来说,导弹在打击战机和航母时所用的材料也不同,攻击飞机时大多使用防空导弹,但攻击航母时用的却是巡航导弹或者导弹导弹。众所周知,导弹命中率与攻击速度和距离有很大关系,而防空导弹飞行速度相当快,加上一般被攻击的飞机距离也比较近,一旦导弹快速发射,战机连反应的时间都没有,即便战机幸运逃过一劫,最终也会被定位制导的导引头锁定,基本上是只有等待被引爆的可能。总而言之,由于速度快、距离近,又有定向装置帮忙,导弹命中战机相当容易。可航母就大大不同了,巡航导弹和导弹导弹威力虽比航空导弹强不知多少倍,可航母这位大将也是天下第一擅守,一般情况下,防空导弹这种小型导弹,压根没有击中航母的机会,而巡航导弹和弹道导弹一般用于攻击固定目标,航母移动是慢了点,但毕竟不是固定坦克,加上航母防御力惊人,就算来十个八个大导弹都能轻松解决,而要是多艘航母联动形成的战斗群,那战斗力简直不要太夸张。此外,航母防御能力堪称世界第一,说是御敌于千里之外也是毫不夸张。航空母舰外围由固定预警机组装而成,可以快速探测敌情,在收到预警机传回的信息之后,雷达就会通过中远程弹道导弹对来犯之敌进行拦截,此过程会摧毁大量进攻导弹,即便有漏网之鱼,航母之后发射的炮弹也能及时处理掉。因此,航母强大的自我保护能力是免受军事打击的重要保障。本文由百家号作者上传并发布,百家号仅提供信息发布平台。文章仅代表作者个人观点,不代表百度立场。未经作者许可,不得转载。迷彩虎百家号最近更新:简介:迷彩虎,军迷忠实的战友作者最新文章相关文章深度:美国航母最害怕中国导弹都有哪些 这三款上榜|反舰导弹|美军|航母_新浪军事_新浪网
深度:美国航母最害怕中国导弹都有哪些 这三款上榜
  去年9.3大阅兵时中国首次公布了长剑-10陆基巡航导弹、东风-21D反舰导弹以及东风-26中远程弹道导弹等武器。尤其是东风-26,最大射程可达到三四千公里,而从中国大陆沿岸到达美国控制的关岛的距离实际上只有2800公里左右。所以,这样的距离是在中国的导弹射程之内,这也是美国最为担心的地方。同时,美国非常担心反舰导弹、大型轰炸机等对其航母编队在他国近海海域所谓的航行及飞跃自由带来严重的挑战,中国提升反舰导弹,轰炸机远程能力,特别是加强空中巡航导弹的配置等,提升“反介入/区域拒止”能力,令美军不能恣意妄为地随便采取军事行动,这也是美国近年不断介入南海问题以及想提升其航母编队能力的重要的原因。
  自从中国开始打造“反介入/区域拒止”战略以来,美国就一直紧盯着中国的导弹发展,最开始是东风-21D反舰导弹,到后来是长剑-10陆基巡航导弹,但没想到中国突然又搞出了东风-26中远程弹道导弹。一开始,东风-21D反舰导弹只是一个传说,美国没人相信, 但时间发展到新世纪的第一个十年结束,中国竟然把这一传说变成了现实,该导弹竟然正式成为中国的杀手锏。最诡异的是,这是一型弹道导弹但却执行的是飞航式导弹的反舰任务,而且其最值得称道的绝活,就是几乎垂直的末端弹道,可以令当今的任何反导系统望尘莫及,不管是舰载的SM-3还是SM-6都只能望弹兴叹。
  当然长剑-10陆基巡航导弹也不是省油的灯,该弹的海军型称为东海-10,是一种中远程巡航导弹,同时也是一种多用途导弹。如果这种导弹部署在陆地,那么,它将对第一岛链内外的海上和陆上目标进行毁灭性打击,足以对这个范围内的美军和日本目标构成极大威胁;如果将其部署在舰艇上,那么其具有打击周边1500公里范围内的海上和陆地目标的能力,可对日本本土和关岛的目标构成严重威胁;如果由轰-6K轰炸机携带,则足以在该机3000公里的作战半径内,对从西太平洋到印度洋的所有目标形成威慑事态。而不管是部署在陆地、海上还是空中,其也具有精确打击海上航母编队的能力。
  最新最厉害的杀手莫过于东风-26中远程弹道导弹,这是一种此前西方闻所未闻的新利器,但外界对其的担心来自两个方面,一是其号称“关岛杀手”,足以清除关岛对中国大陆的所有威胁,二是具有比东风-21D反舰导弹更远的反舰作战能力。第一个作用,中国就是利用东风-26导弹来打击在西太所有的对中国构成威胁的基地群,这就是其“关岛快递”美名的由来;第二个作用,就是可以比东风-21D反舰导弹的射程更远,可以将第二岛链内外的所有海上大型目标当作靶标,包括敌方的航母编队等都要止步在其打击范围之外,如果贸然进入那只能是死路一条。
  不管上述三种导弹真正的性能如何,但随着国内外对它们的热烈炒作,显然达到了中国的目的。很明显,96台海危机美国航母战斗群肆无忌惮的闯入,对中国构成的屈辱至今令所有中国人印象深刻,而如今中国的“反介入/区域拒止”能力足以令全体中国人心花怒放。有了长剑-10陆基巡航导弹、东风-21D反舰导弹以及东风-26中远程弹道导弹等武器,中国才真正树立起了亚太主要国家和世界大国的良好的形象,也正因为如此,中国东南部的三个海洋才会有波无浪,中国的海洋安全才不会是一句空话,中国在亚太的主导权才真真正正实实在在落到了实处。(作者署名:军评陈光文)完成对美国航母的一次攻击需要发射多少导弹才能确保突防成功?需要命中多少枚才能将它击沉?
想想“大和”吧,那是中了多少炸弹才进海底的!
从实际出发来说,至少40枚以上巨型反舰导弹,并且要附加损失10架以上的战机和两艘中型以上的水面舰只和一艘潜艇.这是已经能成立的条件最小代价了,甚至把整个海军家当全部压上也不一定能击沉一艘航母.
如果是不使用岸基弹道导弹,拿老美的说,反舰蛋蛋射程都不超过500KM,如何逃过预警机的追踪进入射程很难说.甚至还没进入射程已经被人家的"大黄蜂"蛰成蜂窝了,就算能有两架飞机和一艘舰艇进入射程,还要避免电子干扰锁定目标.
这样一起发射的蛋蛋只有6枚,至少有3枚难逃宙斯盾的拦截,还有2枚可能就被"火神"或"密集阵"干掉,能击中的只有一枚,这还不算空中拦截.一枚就算击中舯部要害,航母也绝不会沉
其他答案(共9个回答)
-803只要2枚就够了。
不知道有没有玩过《简氏舰队指挥官》。
对于拥有4艘以上的宙斯盾系统驱逐舰的航空母舰战斗群(尤其是对方还有预警机),我方战机(飞豹或者轰6)持续以每波20枚左右、持续5波、每波到达间隔不超过1分钟,最终的结果,最后一共只有5枚能接近到战斗群10Km的距离,被战机和密集阵拦截掉3枚后,剩余2枚击中最前方的一艘驱逐舰……
在此仅想表达2点:
1,《简氏舰队指挥官》的真实性。
2,宙斯盾系统和数据链的可靠性。
如果要讨论命中后 的杀伤性能的话,需要4-6枚SSN12玄武岩(1000公斤战斗部),10-12枚SSN22(300公斤战斗部),40枚以上100公斤战斗部等级的反舰导弹才能完全瘫痪航母,注意,是瘫痪,不是击沉。
航母不需要击沉,只需要炸毁它的甲板,或者毁伤它的弹射器和助降系统,它的飞机无法起降,这艘航母基本上就只有逃命的份了。
击沉一艘10万吨以上的大型航母,非常难,因为美国大型航母非常重视防护能力,不谈外围军舰飞机的保护,就航母本身装甲非常厚,水密舱很多,击中四五个根本不会沉。而且航母一般距离海岸线比较远,避开敌人反舰导弹的射程。航母的死穴在甲板,因为航母和护航舰艇的雷达天线一般是水平方向稍向上倾斜约30度,没有雷达长时间搜索天顶方向,即使相控阵雷达在天顶方向的分辨率和探测距离也是最小,假如隐身的反舰导弹爬升到航母上方3万米高度,从上往下垂直打击航母,航母反应时间很短,一枚携带分导子母弹头的导弹足以毁伤甲板上层建筑,这艘航母的作战能力基本没有了。
我的方案如下:
方案1:战略核导弹一枚,带核弹头可摧毁一个航母航队,不带核弹头精度要求在1米内可摧毁一艘航母。
方案2:按顺序:
1、首先用4-6枚子母弹从一定高度对航母水面舰队进行表面地毯式轰炸,对舰队的防空雷达、近距空设施、航母跑道进行一定程度的摧毁,子母弹的密度越大越好。(要确保有2-3枚能成功突防)
2、三枚2-3倍音速精确导弹攻击宙斯顿舰,一枚突防可击沉宙斯顿。
3、20-30枚1-2倍音速精确导弹对航母舰队其它舰支进行齐射攻击(1-2枚/艘),剩5-10枚攻击航母。
以上方案可重创整个航母舰队,甚至可击沉航母。
但a、要10-20架歼机机5-10个中队进行空中格斗(有点吃力),b、2-3架轰炸机实施子母弹及2-3倍音速导弹的投放。c、2艘导弹巡洋舰+8艘导弹快艇(022)对航母舰队进行导弹齐射。d、1-2架空警2000支持。e、1-2艘攻击核潜艇,3-6艘常规潜艇支持。
1、50-100枚1-2倍音速导弹对整个航母舰队进行第一轮齐射攻击。
2、5-10枚2-3倍音速导弹对航母齐射攻击。
以上3个方案,基本可摧毁一个航母舰队。
我记得看过一篇文章上一位明级潜艇艇长说,击沉一艘美国核动力航母从我国的鱼雷装药量来说击中要害的话只需要6枚就能击沉。
一些人可能有误区。实际上等装药量的反舰导弹...
多少枚导弹能击沉取决于被击中的部位和损管是否得力等,但一般的来说,要想击沉尼米兹级这样的大型航母至少要5枚以上。美国一位海军将领在国会为海军拨款造新舰的一个听证...
饱和攻击就是:在攻击完成之后我们看到的只能是航母的碎片和一具具死尸,这就叫做饱和攻击!!!!!!!
首先,不能光听网上的报道吹的多么好,就一定觉得我们的导弹能打航母。
我们可以来简单的想一下。
先从内部因素开始分析
航母是会动的,导弹发射出去了,落弹地点就基本...
最近网上许多兄弟说了。如果台海战起,老美派太平洋舰队来帮忙,我们就用俄罗斯的SS-N-22或者俱乐部反舰导弹和中国新的C-803反舰导弹对他们的航母进行打击。感...
答: 步兵战车装甲薄,火力差,比坦克差太远了。
答: 好象没有,他们就信核武
答: 缺一不可
关于三国武将的排名在玩家中颇有争论,其实真正熟读三国的人应该知道关于三国武将的排名早有定论,头十位依次为:
头吕(吕布)二赵(赵云)三典韦,四关(关羽)五许(许楮)六张飞,七马(马超)八颜(颜良)九文丑,老将黄忠排末位。
关于这个排名大家最具疑问的恐怕是关羽了,这里我给大家细细道来。赵云就不用多说了,魏军中七进七出不说武功,体力也是超强了。而枪法有六和之说,赵云占了个气,也就是枪法的鼻祖了,其武学造诣可见一斑。至于典韦,单凭他和许楮两人就能战住吕布,武功应该比三英中的关羽要强吧。
其实单论武功除吕布外大家都差不多。论战功关羽斩颜良是因为颜良抢军马已经得手正在后撤,并不想与人交手,没想到赤兔马快,被从后背赶上斩之;文丑就更冤了,他是受了委托来招降关羽的,并没想着交手,结果话没说完关羽的刀就到了。只是由于过去封建统治者的需要后来将关羽神话化了,就连日本人也很崇拜他,只不过在日本的关公形象是扎着日式头巾的。
张飞、许楮、马超的排名比较有意思,按理说他们斗得势均力敌都没分出上下,而古人的解释是按照他们谁先脱的衣服谁就厉害!有点搞笑呦。十名以后的排名笔者忘记了,好象第11个是张辽。最后需要说明的是我们现在通常看到的《三国演义》已是多次修改过的版本,笔者看过一套更早的版本,有些细节不太一样。
要有经营场所,办理工商登记(办理卫生许可),如果觉得有必要还要到税务局买定额发票,不过奶茶店一般人家消费是不会要发票的巴,要买设备,要联系供应商备一些原料,就好啦,没啥难的,不过要赚钱的话就得选好开店地段。
办理手续的程序(申领个体执照):
1、前往工商所申请办理
2、根据工商所通知(申请办理当场就会给你个小纸条)前往办理名称预核
3、拿到名称预核通知书,办理卫生许可证(前往所在地卫生监督所办理)
4、拿着名称预核通知书和卫生许可证前往工商所核发营业执照。
规模以上工业企业是指全部国有企业(在工商局的登记注册类型为"110"的企业)和当年产品销售收入500万元以上(含)的非国有工业企业。
如果是下拉的,只有党员而没有预备党员一项,可填党员,但如果是填写的,你就老老实实填预备党员,填成党员对你没什么好处,填预备党员也不会有什么吃亏。
考虑是由于天气比较干燥和身体上火导致的,建议不要吃香辣和煎炸的食物,多喝水,多吃点水果,不能吃牛肉和海鱼。可以服用(穿心莲片,维生素b2和b6)。也可以服用一些中药,如清热解毒的。
确实没有偿还能力的,应当与贷款机构进行协商,宽展还款期间或者分期归还; 如果贷款机构起诉到法院胜诉之后,在履行期未履行法院判决,会申请法院强制执行; 法院在受理强制执行时,会依法查询贷款人名下的房产、车辆、证券和存款;贷款人名下没有可供执行的财产而又拒绝履行法院的生效判决,则有逾期还款等负面信息记录在个人的信用报告中并被限制高消费及出入境,甚至有可能会被司法拘留。
第一步:教育引导
不同年龄阶段的孩子“吮指癖”的原因不尽相同,但于力认为,如果没有什么异常的症状,应该以教育引导为首要方式,并注意经常帮孩子洗手,以防细菌入侵引起胃肠道感染。
第二步:转移注意力
比起严厉指责、打骂,转移注意力是一种明智的做法。比如,多让孩子进行动手游戏,让他双手都不得闲,或者用其他的玩具吸引他,还可以多带孩子出去游玩,让他在五彩缤纷的世界里获得知识,增长见识,逐渐忘记原来的坏习惯。对于小婴儿,还可以做个小布手套,或者用纱布缠住手指,直接防止他吃手。但是,不主张给孩子手指上“涂味”,比如黄连水、辣椒水等,以免影响孩子的胃口,黄连有清热解毒的功效,吃多了还可导致腹泻、呕吐。
合肥政务区网络广告推广网络推广哪家公司比较好 一套能在互联网上跑业务的系统,被网络营销专家赞为目前最 有效的网络推广方式!
1、搜索引擎营销:分两种SEO和PPC,即搜索引擎优化,是通过对网站结构、高质量的网站主题内容、丰富而有价值的相关性外部链接进行优化而使网站为用户及搜索引擎更加友好,以获得在搜索引擎上的优势排名为网站引入流量。
良工拥有十多位资深制冷维修工程师,十二年生产与制造经验,技术力量雄厚,配有先进的测试仪器,建有系列低温测试设备,备有充足的零部件,包括大量品牌的压缩机,冷凝器,蒸发器,水泵,膨胀阀等备品库,能为客户提供迅捷,优质的工业冷水机及模温机维修和保养。
楼主,龙德教育就挺好的,你可以去试试,我们家孩子一直在龙德教育补习的,我觉得还不错。
成人可以学爵士舞。不过对柔软度的拒绝比较大。  不论跳什么舞,如果要跳得美,身体的柔软度必须要好,否则无法充分发挥出理应的线条美感,爵士舞也不值得注意。在展开暖身的弯曲动作必须注意,不适合在身体肌肉未几乎和暖前用弹振形式来做弯曲,否则更容易弄巧反拙,骨折肌肉。用静态方式弯曲较安全,不过也较必须耐性。柔软度的锻炼动作之幅度更不该超过疼痛的地步,肌肉有向上的感觉即可,动作(角度)保持的时间可由10馀秒至30-40秒平均,时间愈长对肌肉及关节附近的联结的组织之负荷也愈高。
正在加载...
Copyright &
Corporation, All Rights Reserved
确定举报此问题
举报原因(必选):
广告或垃圾信息
激进时政或意识形态话题
不雅词句或人身攻击
侵犯他人隐私
其它违法和不良信息
报告,这不是个问题
报告原因(必选):
这不是个问题
这个问题分类似乎错了
这个不是我熟悉的地区
相关问答:12345666666666技术贴:弹道导弹怎么打航母的研究
我的图书馆
技术贴:弹道导弹怎么打航母的研究
技术贴:弹道导弹怎么打航母的研究 &&小编: Allu傾城
&热度: 846°
小编注:本文来自台湾yst的作品,文章较长,分为21个章节,目录如下:
(一)简述
(二)远因
(三)近因
(四)相关科技
(五)反舰弹道导弹的原理与操作
(六)海面目标的搜索、发现与跟踪
(七)侦查卫星
(八)普通雷达无法用来搜索航空母舰
(九)超视距(超越地平线)雷达
(十)一些简易的雷达知识与术语
(十一)雷达的操作模式
(十二)中国大陆“天波雷达”探测误差
(十三)TG的天波雷达体系
(十四)YST 对【简氏防务周刊】报导的一些评论
(十五)长程无人侦察机
(十六)攻击大型海面船只的弹道导弹
(十七)指挥中心
(十八)不同角度的反应
(十九) YST 的评估
(二十)战略上的深远影响
(二十一) 政治上的深远影响&
(一)简述
本文论述的是中美不对称战争中最重要的例子,那就是使用弹道导弹攻击大型海面船只。所谓“大型海面船只”是指排水量在八千吨以上高价值与高威胁性的水面作战船只,譬如导弹驱逐舰(八千吨以上)、导弹巡洋舰(一万吨以上)、指挥舰(一万八千吨)、直升机母舰(二万吨以上)、攻击航空母舰(四万吨以上)....等等,它们的造价都在10亿美元以上而且具有强大的攻击能力。
上面所说的这些船只都在本系列讨论的应用范围之内,但是TG研发弹道导弹攻击大型海面船只的主要攻击目标是航空母舰,特别是美国的超级航空母舰,它们的满载排水量接近甚至超过十万吨,它们每一艘的造价加上所携带武器价值接近100亿美元,它们是美国海军进攻武力的核心。
海军是战略军种,海军作战的胜败对战争物质的生产与后勤补给产生重大的影响,因此直接关系到战略的演变与战争最后的胜败。对于传统的岛国,譬如英国与日本,海战的胜败直接决定国家的存亡;对于非传统的“岛国”,譬如美国,海战的胜败直接决定其全球霸权的存亡。
使用弹道导弹攻击大型海面船只是人类战争历史上革命性的变化,这项武器系统将彻底改变海面作战的形式,影响极其深远。
(二)远因
海军的发源很早,海战的历史非常悠久,太古老的事情我们不去考证和研究。
近代海军的发展起于15世纪,也就是郑和七次下西洋的那个年代,可惜的是郑和的舰队虽然在当时举世无敌,但是中国不是一个侵略的国家,因此郑和舰队对世界的影响很小,长远的影响几乎可以说没有。郑和之后,明朝皇帝颁布了禁海令,不准两个桅杆以上的船只出海,愚昧与短视的明朝皇帝正式封杀了中国领先全世界的舰队与航海技术,使中国成为一个没有海权和海洋意识的陆权大国,也错过了中国向海外扩张与拓展的最后机会。但是就在同一个时期,西方葡萄牙与西班牙的海军却获得国王的鼓励与国家财政的大力赞助而蓬勃地发展起来。西方的民族具有很强的侵略性,于是海军领导这些国家进行海外扩张与掠夺,迅速地在海外建立殖民地,形成现代列强的世界版图。更重要的是,海军是一个非常高科技的军种,西方海军的发展与激烈竞争不但开展了西方列强的经济基础,也奠定了今天西方列强科技研发的坚实基础。
五百年来世界兴起的列强没有一个不是依靠强大的海军,因为海军是掠夺海外资源和打开国际贸易最有效和必不可少的工具。美国的全球霸权,无论是二十世纪五0年代全球霸权的建立还是现在一超独霸的维持,最重要的力量就是美国海军主宰性的统治力量,说得更确切一点,是美国海军超级航空母舰的作战能力。
由于飞机的飞行速度快和飞行距离远,没有任何船只能够抵挡飞机的攻击,所以很自然地,航空母舰就成为海上作战的霸王。航空母舰的攻击能力非常强大,但是本身的防御能力却非常薄弱,因此不能单独行动,必须有其他船只的支援才能有效地进行战斗。通常每艘航空母舰至少需要两艘导弹驱逐舰(防空或反潜)、两艘导弹巡洋舰(防空)、两艘核子潜艇(反潜)和一艘补给舰,另外视作战地区潜艇的威胁程度还需要配备一艘或多艘护卫舰,才能进行战斗任务。这个庞大的舰队就是我们所说的“航空母舰战斗群”。
美国的航母舰队无论是吨位、性能、训练与后勤都远超过任何一个国家,是无可争议的海上霸王,二次大战以后基本上没有对手。我们必须清楚认识海军不但科技的门槛非常高,而且基本上是钱堆出来的,没有任何国家有如此庞大的经济力量支持甚至一个像美国这样的航空母舰战斗群,而美国的航空母舰战斗群有11个,即使全世界所有海军力量都加起来也不是美国海军的对手,差得太远了。中国要遏止美国的扩张与霸权行为必须跨过的门槛就是能够有效对付美国海军的航空母舰战斗群,没有第二条路。
军舰最怕飞机,不论什么军舰都怕。美国一艘航空母舰通常携带80架飞机,必要时可以增加到一百架,它的空中武力相当于地面上一个空军联队(大陆称空军师),作战能力非常可观。目前对付航空母舰最有效的方法就是也用航空母舰大家对着干,交战双方都使用飞机对飞机在海面上空交战。这种传统的作战方式不但耗资巨大,而且短期之内对中国而言是不可能的,长时间也很难形成优势。于是TG科学家构思用中程弹道飞弹攻击航空母舰,便宜、省事又省时,最重要的是本小而利大。想想看,一枚中程导弹所费不超过一千万美元(中国的造价),攻击的目标价值一百亿美元,千分之一的代价,太划算了。这就是不对称战争。
(三)近因
1996年台湾海峡发生举世震惊的“飞弹危机”,美国派了两个航空母舰战斗群前来危机地区宣示武力,虽然航空母舰编队并没有进入台湾海峡,但是巡弋在距离台湾东部数百公里的海面上仍然对解放军造成极大的压力。TG誓言绝不会让这种情况再度发生,用弹道飞弹攻击大型水面船只的研究工作便正式立项、全力进行。
历史上的任何重大事件,近因不过是借口,远因才是根本。大到启动战争,小至重要武器的发展,都是如此。YST 要说的是,弹道导弹攻击大型海面船只是导弹应用很自然的发展方向,当相关科技的累积和成熟到达一定程度时自然就会朝着这个方面发展。TG科学家在弹道导弹末段机动制导的理论研究工作其实在1991年便完成了,正式的研究报告在1994年发表于【宇航学报】上。1996年美国海军航空母舰的威慑行动不过使这个问题的严重性、必要性和急迫性浮上台面而已,它迫使TG下定决心、正式立项、把这门科技从研究推入发展,其实它的基础研究工作早就在五年前完成了。
(四)相关科技
现在让我们进一步观察用弹道导弹攻击大型海面船只需要哪些科技。
传统的弹道导弹只能用来打击固定的地面目标,如果要用来攻击海面移动目标,那么导航与导引设备就要重新设计,而且还需要卫星侦察系统和卫星通讯系统来配合,后者要求的科技水平比前者要高,这其中的学问就大了,不是一件简单的事。这项工程耗资巨大,困难度高,这个世界只有中、美、俄三个大国有能力研发,俄国没钱,美国没有这个需要,所以全世界也就只有中国科学家在这方面做研发了。
中国大陆经过十几年的努力终于发展出今天用弹道导弹攻击海面船只这个独门武功,其实一点也不奇怪,这是科技基础和国际情势产生的自然结果。重要的是,我们要对这个革命性的独门武功有正确的认识。
我们必须认识的是:反舰弹道导弹不是只有一枚导弹,这是一个包括侦察、通讯、指挥和作战四大系统的综合体。所以发展反舰弹道导弹和发展远程作战体系是分不开的,这就使得中国大陆发展反舰弹道导弹有别于美国与德国在二战时研发的超级武器。德国的 V-1巡航导弹与 V-2弹道导弹和美国的原子弹都是单一的超级武器,而中国大陆的反舰弹道导弹所发展出来的不是一个单一武器而是一个庞大的“远程作战体系”,其应用的范围涵盖所有的作战系统,反舰不过是其中的一个应用罢了。
上面这段叙述是非常重要的观念。是的,“远程作战体系”就是中国的军事科学家在20与21的世纪之交研发出来的独门武功。在下面我们介绍弹道导弹的反舰过程中就可以清楚看到这个“远程作战体系”的详细内容。
(五)反舰弹道导弹的原理与操作
反舰弹道导弹的原理与操作非常复杂。原理的复杂在搜索、发现与跟踪系统的高科技与多样化;操作的复杂在于如何融合这么多搜集到的信息作出正确的判断。
反舰弹道导弹最困难的部分不在导弹的本身而是在搜索、发现与跟踪目标所需要的深厚功力。基本上,海面的大型船只一旦被发现而且准确地被跟踪,其实消灭它的工作就已经大部分完成了。所以我们要花相当大的篇幅,也就是主要的篇幅,来叙述这个艰难的工作。
(六)海面目标的搜索、发现与跟踪
航空母舰看起来固然很大但是海洋的面积实在太大了,在辽阔的海洋搜索一艘航空母舰不是一件简单的事,非常地耗时,要探测到一艘航空母舰还需要克服各种天气的考验,譬如黑夜、云雾与雨雪。所以搜索航空母舰犹如大海捞针,通常需要多种探测手段,是一件非常困难的工作,更何况航空母舰是一个快速移动的目标,最高速度超过三十节(每小时三十海浬,大约55公里),一天可以神秘地在海洋中移动一千公里,在暗夜和云雾的掩护下经常轻易地摆脱追踪。过去的经验告诉我们,敌人的航空母舰经常在运气好的情况下偶而被发现,但是由于不能连续追踪经常又被它逃脱了。发现、追踪和长时间连续追踪是三件不同的事情,困难度相差很多,单单发现目标是远远不够的,只有达到长时间连续追踪才有消灭目标的把握。事实上,自从航空母舰出现在战争中,发现和连续追踪敌人的航空母舰就是所有作战行动中最困难的,尤其是前者。过去的经验告诉我们行踪的神秘是航空母舰最大的保护,直到今天这个原则还是适用的。
但是科技是快速进步的,能够大面积搜索海洋的利器终于出现了,那就是侦察卫星。航空母舰在卫星的监视下要做到行踪神秘已不可能,至少理论上是如此。但是侦察卫星非常昂贵、牵涉的科技非常高,组织一个侦察卫星网谈何容易,今天能够在战争中全面付诸实施的也只有美、俄、中三个大国而已,其中俄国已经渐渐力不从心,目前只剩下美、中两国。
我们把搜索(search)、发现(detection)与跟踪(track)大型海面船只(特别是航空母舰)的科技深入浅出地在下面几节做一个有系统地论述。即使不是学理工的人只要花几分钟的时间都可以了解这些影响人类非常深的科学与技术,它们的应用不只在军事上,也存在于我们的日常生活中,譬如自然灾害的发现、扑灭与人员救助。
大型海面船只的搜索、发现与追踪牵涉到很多不同的探测器,包括侦察卫星、长程地面雷达、无人侦察机和空中预警机。这些探测器没有一样可以单独完成任务,但是如果适当的协同工作就可以使任何大型水面船只在大洋中不但无所遁形而且可以非常准确地对它们进行长时间的连续追踪。
(七)侦查卫星
古人说登高望远,一点也不错,爬山者的乐趣就在最后站在顶峰上俯瞰辽阔的大地。现代的探测器也是一样,飞得越高看到的地面和海面也就越广。海洋的面积占地球面积的四分之三,如此大面积的搜索是非常困难的事,要看得又广又远就要升得够高。
航空母舰上面的作战飞机都有一定的作战半径,以美国海军的主力战机F/A-18为例,空战的作战半径是740公里,对地和对海攻击的作战半径是1065公里,所以绝大部分的时间航空母舰距离敌人的领土都在一千公里以外,这是一个安全距离,只有在发动攻击时才会接近目标区。
我们需要了解的是,航空母舰距离攻击的目标越近则舰载机滞留目标上空的时间就越久,这对攻击的效果是至关重要的,所以在发动攻击的时候航空母舰会尽量靠近攻击地区。至于航空母舰会多靠近目标区,那就要看对手的空军力量有多强。由于舰载机的性能一般不如陆基战机(舰载机结构重),在面对强国时,美国航空母舰多半在对方陆基战机的攻击距离以外。当然如果攻击的对象是弱国,美国航空母舰就可以非常靠近攻击区,譬如80年代美国轰炸利比亚,美国航空母舰就在距离利比亚海岸只有几公里处巡弋。利比亚的军事力量太弱了,一般而言,即使在进行攻击任务的时候,航空母舰距离攻击目标至少也在五百公里以外。
航空母舰的攻击能力全在舰载机,所以如果能够阻止敌人的航空母舰在领海范围的一千公里以外,那么敌人航空母舰的威胁力就几乎消失了。当然,如果要把威胁完全消除,舰载机携带的制导武器的射程就要加进去,譬如空对舰或空对地的导弹射程,所以至少还要加上五百公里。除此之外,YST 认为还需要加上五百公里的安全系数(safety margin)。总结上面所有的考虑,对系统设计的工程师而言,阻止敌人的航空母舰在国家领土两千公里以外是必须的,在这个距离之外的航空母舰就纯粹是一种摆设了。
防御航空母舰的攻击是相当困难的,难就难在你不知道敌人的航空母舰在哪里。所以防御航空母舰的首要任务就是在茫茫大海中先找到它,而航空母舰最重要的工作就是隐密,不让你找到。这是一个猫和老鼠的游戏。
一架侦察机飞在一万两千公尺的高空,它的视界极限最远也只能达到四百公里,所以对侦察航空母舰来说侦察机必须进入敌人舰载机的攻击范围之内才有可能发现航空母舰,在这种情形下侦察机生存的机会微乎其微。这还不是所有的问题。遥测感应器的覆盖角度通常30度左右,所以飞行在一万两千公尺的高度,侦察机搜索海面的宽度不到50公里,要覆盖一个特定的海洋区域,譬如东海,需要很久的时间才能完成一次搜索,航空母舰很可能从搜索区中尚未搜索的部份进入侦察机已完成搜索的部分而未被发觉,甚至航空母舰早就驶离搜索区了。所以侦查机面对浩瀚的海洋远远不能满足搜索大型海面船只的需要。
加快侦查机的飞行速度来实现快速的海洋搜索是不实际的,侦查机的最高航速比巡航速度快不了多少(不到50%),更何况有些遥测系统是有速度限制的,譬如雷达成像。要满足快速搜索海面船只的要求更有效的方式是增加飞行高度。但是还有什么比飞机飞得更高呢?比飞机飞得更高的人造物体就只剩下人造卫星了,是的,海洋的大面积搜索非卫星莫办。人造卫星的搜索宽度至少有四、五百公里,航空母舰的最高航速为每小时55公里,所以如果能安排卫星执行每四小时观察一次就可以达到无缝覆盖,这是可以做到的。
下面介绍侦察卫星的功能与相关原理。
甲. 物理现象
在叙述卫星前,让我们温习小时候学过的一些物理现象。
凯普勒定律(Kepler's law):十六世纪德国数学家和天文学家凯普勒(Johannes Kepler,)在观察太阳系的行星时发现一个非常有趣的规律:
a.任何行星围绕着太阳运行形成一个通过太阳中心的平面,行星运行的轨道在这个平面上一定是 一个椭圆(注意,圆是 当椭圆长轴与短轴相等的一种特殊情况);
b.如果你连接行星和太阳的中心就会形成一条直线,这条直线当行星运行的时候就会形成一个扇形的面积,虽然行星与太阳的距离随时都在改变,但是它在单位时间内所覆盖的扇形面积不会改变而是一个常数(constant)。
上面叙述的a与b就是天文学上非常有名和非常重要的凯普勒定律。
乙. 卫星的轨道
读者必须了解卫星的应用与它的运行轨道是分不开的,不同的应用需要不同的轨道,譬如侦察卫星和通讯卫星的轨道是完全不同的,即使同样是侦察卫星,携带的遥感器不同其设计的轨道也不同,这个轨道错不得。于是每颗卫星在发射上就需要作出特殊的安排与调整。由于卫星携带的感应器发射后就不能改变,所以卫星轨道的精确性和它的应用息息相关,如果发射的轨道错误,那么这颗卫星的应用价值就完全没有了,形同报废。
卫星所携带的燃料非常有限,推力也很有限,主要用作姿态调整和轨道的维持,万不得已才做变轨飞行,这是最耗费燃料的。所以把卫星准确地送入预定轨道极为关键,卫星的发射任务如果不够精准,轻则减少卫星的预定寿命,重则导致卫星成为废物。卫星的运行与行星的运行道理是一样的,所以凯普勒定律可以直接应用在卫星轨道的计算上,得出卫星运行的性质。
卫星在环绕地球的飞行中循着一定的轨道并且有下列几个重要性质:
a. 这个轨道可以是圆,圆心是地球的中心,卫星运行的高度不变;
b. 卫星的轨道也可以是椭圆,这时候卫星飞行的高度随时间而改变,但有规律可寻,那就是凯普勒定律,最重要的性质就是卫星距离地球越近其飞行的速度越快;
c. 卫星运行形成的平面和地球赤道形成的平面有一个夹角,这个夹角科学家称为“倾角”(inclination angle)。“倾角”在卫星的应用上是非常、非常重要的参数,因为不同的倾角卫星的观察就覆盖不同的地球表面。
d. 卫星运行的高度越高,运行的周期越长。
譬如高度只有一百公里的极低空卫星,86分钟就绕地球一周;
美国的航天飞机通常运行在六百公里的高度,97分钟就绕地球一周;
卫星运行高度上升到一千公里(美国航天飞机的极限),106分钟绕地球一周;
卫星运行高度上升到一万公里,348分钟绕地球一周;
卫星运行高度上升到两万公里(大约美国GPS导航卫星的高度),711分钟绕地球一周;
卫星运行高度上升到35,786公里(地球同步卫星的高度),1436.07分钟绕地球一周。
丙. 卫星的发射场
前面说过,卫星运行的倾角决定卫星观察时覆盖地面的区域,一个非常重要的物理现象是卫星发射场的纬度决定“倾角”,譬如一个发射场位于北纬38度,它发射的卫星倾角就是38度。下面我们把全球重要的卫星发射场的纬度列举如下:
发射场 纬度
法国南美洲圭亚那库鲁发射场 北纬 5.0度
美国肯尼迪航天中心 北纬28.5度
日本种子岛航天中心 北纬30.4度
俄罗斯拜科努尔航天中心 北纬45.6度
中国酒泉卫星发射中心 北纬40.6度
中国太原卫星发射中心 北纬37.5度
中国西昌卫星发射中心 北纬28.1度
中国海南文昌航天中心 北纬19.0度
如果一个发射场要发射与它的纬度不同的倾角的卫星,那要怎么办呢?
答案是:首先发射卫星进入轨道运行,这时候倾角等于发射场的纬度,然后由控制中心指挥再进行变轨运作改变倾角。无论改变卫星运行的高度或是倾角都称为变轨运作,由卫星上的火箭发动机提供所需动力,这些都是迫不得已而不得不为的操作,尤其改变倾角的变轨飞行非常耗费燃料,一旦燃料耗尽这个卫星的寿命就终结了,这些都必须在卫星设计者的考虑中。燃料计算非常重要,它直接决定卫星的寿命,通常卫星管理工程师必须预留部分燃料作为卫星在寿命终结前脱离轨道之用(英文称做de-orbit),把宝贵的特定轨道留给后来者。
卫星都是向东发射的,因为地球的自转是从西向东,我们要利用地球自转的水平速度将卫星送入轨道。地球自转在赤道上形成的水平速度最大,纬度越高所得到的水平速度就越小,到了南北极地球自转的水平速度就是0了,所以高纬度的国家发射地球同步卫星是吃大亏的,必须用更大推力的火箭来弥补。这就是为什么每个国家都把卫星发射场尽量设在国土最靠近赤道的地方。也就是这个原因中国大陆决定在海南岛的文昌建一个规模宏大的航天中心,主要考虑的因素有下列几点:
a. 海南文昌是中国国土纬度最低的地方,在海南文昌发射比在四川西昌发射以现有的火箭而言相当于推力提升10~15%。想想看,同样的火箭搬到文昌,卫星上的酬载可以增加多少,10~15%的推力提升是不得了的效益。
b. 如果发射的是同步卫星,根据大陆专家的报导在海南文昌发射要比在四川西昌发射卫星变轨运作进入同步轨道所耗费的燃料要节省100公斤,相当于延长两年以上的寿命。
c. 酒泉与西昌都深处内陆,交通不便,全靠火车运输,所以卫星与运载火箭在体积和重量上都受到铁路的限制,譬如火箭的直径不能超过3.35米。文昌在海边,用船运输非常方便,体积和重量都不成问题。
d. 火箭发射后,分离的火箭残骸掉到海里,回收容易,也不会伤人。
e. 中国当初把发射场设在甘肃、山西和四川主要是基于国防考虑,担心如果打起仗来基地会不保或遭到破坏,现在的国防力量已足够强大自然没有这种顾虑。新华社在日报导,建设海南文昌发射场是为了我国航天事业可持续发展的战略,满足新一代无毒、无污染运载火箭和新型航天器发射的任务需求。海南文昌的航天发射基地占地20平方公里,包括航天发射港、太空主题公园、火箭组装厂以及指挥中心等一系列项目。文昌航天基地规模宏大,设备先进,建成后将成为中国同步卫星、探月飞船和永久性太空站的发射场。
丁. 卫星的酬载
卫星的应用全靠上面装置的各种光学和电子设备,这些设备随应用的不同而改变,譬如侦察卫星有红外线探测器、高分辨率照相机、雷达、光学感应器,通讯卫星有转发器、导航卫星有特殊的发射器和极精确的原子钟、科学卫星有各种不同的科学仪器....等等,这些卫星上的仪器与设备统称为酬载(payload)。由于卫星上的空间、重量、电力都非常有限,不可能带太多的仪器,有的侦察卫星只有照相机,有的卫星只有红外线成像仪,有的卫星只有雷达,当然只要各种条件许可也有卫星携带多种探测器。不论是哪一种卫星酬载的选择非常重要,一个卫星的能力全在酬载性能的高低。
侦查卫星携带的感应器无非是下列四种:
a. 光学仪器:光学仪器包括电视和照相机,后者可以是数字照相机,也可以是传统的胶卷照相机。最大的缺点是只能在白天使用。
b. 红外线成像仪:不同的物体在空间的温度不同,红外线成像仪就是感应温度的差别而成像,所以又称为“热成像仪”,红外线成像仪的优点是可以日夜使用、分辨率高而且探测距离非常远。红缺点是无法穿透云雾,其次的缺点是只能定方向而不能定距离,不过对海面船只测定距离不是问题。
雷达是发射电波讯号然后接受反射回来的电波来测定目标的方位和距离,是二十世纪人类发明的最伟大的遥测仪器。优点是全天候工作,无论白天还是晚上、天气清朗还是有风雨云雾都照常工作,而且精确地测定目标的方向、距离和速度。缺点是设备重、耗能大、目标辨别能力差。
d. 无线电:军舰航行是很难保持无线电静默的,从收听到的无线电讯号加以分析来判断海面目标在哪里和它们的型号。
己. 侦察卫星的应用
侦察卫星无论是用那一种感应器都存在一定的角度,只有在这个角度内才能感应到前面的目标。我们可以想象侦察卫星的感应器就像一只手电筒射出一道圆锥形的光芒照射到地面上,只有在这道光照到的范围内才能看到地球表面的物体。
a. 大面积搜索。所以当卫星飞过地球表面的时候,我们就可以想象卫星感应器扫过一条等宽的带子,卫星飞得越高则这条带子就越宽,通常至少都有数百公里。更进一步说,虽然卫星的轨道不变,但是地球是会自转的,所以第二圈飞过的地方跟第一圈不一样,第三圈飞过的地方跟第二圈也不一样,这样经过几次扫瞄就可以覆盖广大的海洋了。不过卫星扫瞄地面不是想象中这么简单,如何达到无缝隙的扫瞄需要在运行轨道的倾角与高度和感应器的视角做出精细的设计和安排。
b. 卫星变轨。另外值得一提的是卫星感应器的分辨率(resolution)都是以角度为单位的,所以目标成像的分辨率就跟卫星的高度成反比了。也就是说,卫星飞得越高虽然观察的面积越大但是分辨率就越低,因此对目标的判断就会越困难,特别是使用照相机的侦察卫星。
高分辨率的照相机是侦察卫星非常重要的选择,由于相片的分辨率和拍摄的距离成反比,也就是说距离越近分辨率越高,所以通常这种卫星都采用非常椭圆的轨道,所谓非常椭圆就是近地点(只有一、两百公里)和远地点(高达数千公里)差别很大。侦察卫星轨道的设计就是在近地点的时候进行拍照。
根据凯普勒定律,单位时间内卫星运行所覆盖的扇形面积是一个常数,所以卫星在近地点的时候飞行速度比远地点快很多,卫星飞快地拍完照片后便上升到安全的高度,避免受到敌人的攻击,特别是激光照射。有时候为了得到更清楚的照片,卫星会特别(在远地点减速)进行变轨使近地点非常低(低于一百公里)。这种情况在拍照完成后必须升高近地点(在远地点加速),否则每次空气的摩擦会逐渐降低卫星的高度最后导致卫星跌落大气层而烧毁。
c. 小卫星 。战争不会无故发生,都有迹象可寻。当情势紧张时相关国家通常都会临时发射多枚小卫星对热点进行密集观察,这些小卫星重量都很轻,100~500公斤,可以一次发射多个来缩短观察周期。由于小卫星携带的燃料很少,所以小卫星的寿命不长,通常只有几个月,不过对战争的准备已经足够了。但是运载火箭的生产、运输与发射前的准备可不是一件简单的事,真正的困难就在是否能够及时发射,所以快速发射卫星的能力对任何大国都非常重要。
(八)普通雷达无法用来搜索航空母舰
读者都知道由于电波走的是直线,所以雷达都是直线观察。只要在直线范围内,无论距离多远雷达都可以观测。现在问题就来了,地球是圆的,所以只要距离一远,船只低于地平线,雷达就观测不到了。当然,雷达所处的位置越高能够看到的地平线就越远,这就是为什么雷达站通常都是建在山顶上,古人说登高望远就是这个意思 。那么,一个很自然的问题就是:到底站多高就可以看多远呢?
这个问题很容易回答,因为地球的直径科学家已经算出来了。地球并不是一个完美的球体,而是南北方向略扁的椭圆体,赤道的半径是公里,南北极的半径是公里。根据这个数据,YST 给读者准备了一个很简单的公式,只要知道高度就非常容易计算出地平线有多远。定理:如果你的眼睛在 H 英尺高的地方观察,地平线的距离是 R,那么R = 1.23 x (H)**0.5 海里,也就是说,地平线在 1.23 乘 H 的平方根 海里外消失。当然,上面这个定理是受到限制的,那就是 R 不能大过地球的半径,因为你无论登多高也不可能看到地球的背面,譬如你在台湾的上空绝不可能看到纽约的船。
如果一个雷达站建在海边一座一万英尺的高山顶上,那么海平面在123海里(228公里)外就消逝了。即使大陆在一万英尺的高山上建立雷达站也不可能探测到140海里(259公里)外的航空母舰,因为美国最大的航空母舰尼米兹级的杜鲁门号,它的桅杆高度也只有134英尺。这个例子同时也告诉我们为什么现代的导弹驱逐舰都载有直升机,直升机巡航在一万英尺的高空是没问题的,所以舰载直升机除了低飞反潜还可以高飞为这些射程在两百公里以内的反舰飞弹作雷达探测和中途导引。
大陆沿海并没有一万英尺的高山,更何况航空母舰即使发动攻击也通常巡弋在攻击目标的300海里以外,所以无论是陆地上的雷达或是海面上的舰艇雷达都无法在航空母舰的攻击距离外发现它。要知道航空母舰战机的作战半径大约是400海浬(F/A-18E/F),如果连这个最基本的探测距离都不能克服,那么反航母是没有任何希望的,就只能挨打,不要说先下手为强了,连挨打后回手反击航母都不可能,因为你不知道它在那里。现在很清楚了,反航空母舰的第一件事就是研发一种探测和追踪距离远大于400海里(740公里)的感应器。普通雷达完全没有这个能力。
(九)超视距(超越地平线)雷达
问题:有没有一种雷达它的观测距离能够超越地平线呢?
答案:有的,而且有两种,它们是“天波雷达”与“地波雷达”。
来自百度百科
天波雷达和地波雷达统称超视距雷达.
超视距雷达有两种基本类型:利用电离层对短波的反射效应使电波传播到远方的雷达,称为天波超视距雷达;利用长波、中波和短波在地球表面的绕射效应使电波沿曲线传播的雷达,称为地波超视距雷达。天波超视距雷达的作用距离为公里。地波超视距雷达的作用距离较短,但它能监视天波超视距雷达不能覆盖的区域。
超视距天波雷达的缺点是一、体积庞大,二、由于他需要一个发射仰角来进行反射,所以它无法探测一千公里以内的目标,但一千公里以外的目标探测却不存在盲区,天波超视距雷达的作用距离为公里。对于国土面积庞大的我们来讲,通过内陆交叉配制就不存在问题了。这也是除了技术复杂外至今只有中美俄拥有超视距雷达的原因。
超视距雷达工作在P波段(米波),工作波长为10~60米,飞机等隐身武器系统主要对抗频率为0.2~29GHz的厘米波雷达,对米波几乎没有作用。当雷达波束的波长接近于飞机的构件尺寸时,这些构件就像天线一样,开始吸收并反射无线电波。当雷达波长达到“天线”尺寸的两倍时,其效果更佳。隐身飞机的尺寸与超视距雷达的波长相近,因此很容易被这种雷达发现。同时,天波雷达的雷达波是经过电离层反射后从上方照射到飞行器上的,因此它是探测隐身武器的有力工具。国外试验表明,超视距雷达可以发现2800千米外、飞行高度150~7500米、雷达反射截面为0.1~0.3平方米的目标。采用了相控阵技术的超视距雷达,能在1500公里处探测到像B-2隐身轰炸机这样的目标。
超视距雷达在使用上也存在不少问题,例如只能获得目标的方位和距离信息,很难获得仰角信息;测量精度低、分辨率差;电波通道不稳定,干扰因素多,气候变化、北极光和太阳黑子直接影响天波超视距雷达的性能,甚至使它不能正常工作;在中波、短波波段,频谱拥挤,带宽窄,互相干扰严重。此外,超视距雷达系统庞大,雷达站内还配建诸如电离层监测站和气象站等支援设施。为了提高超视距雷达的效能,需要进一步增强系统对环境的自适应的能力和抗干扰的能力。天波雷达虽然定位精度不高,但是测量速度的精度却很高,这就有助于目标识别。商船的最高航速通常是20节,不可能超过25节,而航空母舰的航速超过30节,有些更达到35节所以利用速度很快就可以区分航空母舰与大型商船。除此之外,如果侦察到的这个水面目标附近还有很多每小时三百公里以上的高速目标,那么这个水面目标肯定是航空母舰。所以指挥中心用这种方式就可以初步判定航空母舰的存在和地点。
丙. 几个简单的注解
a. 高频(High Frequency,简写为HF)是有一点误导的,因为这个波段其实是雷达所用的电磁波中频率最低的。一般而言,频率越高雷达的精度就越高,同时体积也越小,所发射的能量也越小。所以军用雷达,尤其是火控雷达(一种指挥炮火发射的雷达,英文称为 Fire Control Radar)要求高精度,选用波段的频率都非常高,甚至超过 30 GHz。譬如战斗机上的火控雷达都是X波段,频率在10GHz左右,是高频波段的300倍到3000倍,波长是3公分左右。 坦克测距使用激光雷达频率高达100,000,000兆赫兹,是高频波段的三百万到三千万倍,所以测得的距离非常准确。警察抓超速使用的测速器也是激光雷达,使用频率高达300,000,000兆赫兹,达到雷达使用频率的最高阶段,因此雷达非常小巧(可以拿在手上)、功率非常小(通常只有数瓦特),应用距离很短,顶多几百米,但是非常精确。这种精确度都不是高频雷达能够得到的。
b. 超视距雷达除了探测的距离非常远之外,它还有一样好处,那就是可以探测到雷达隐身的目标,譬如美国的隐形战机B-2与F-22。这是因为所有雷达隐形物体所用的涂料主要是对付波长很短的雷达波,譬如X波段,目的是要躲避火控雷达的追踪,这对逃避飞机和导弹的火控雷达固然特别有效,但是对波长较长的L波段搜索雷达就差很多了,对高频波段的超视距雷达隐身效果就更差了。除此以外隐形飞机的雷达截面(Radar Cross Section,简称 RCS)都设计成正前方极小化(这就像坦克的装甲在正前方最厚是一样的道理,因为正前方是攻击时遭遇敌人最可能的方向),下方也不错(躲避地面雷达),但是上方的雷达截面就大非常多了,所以无法规避天波雷达的照射与发现。
丁. 中国大陆的天波雷达
大陆在超地平线雷达的研究很早就开始,1970年就完成一座试验型的天波雷达,天线排列长达2300米。根据【简氏防务周刊】的报导,中国已经在2001年研制出一套天波雷达(OTH-B),探测距离为800~3000公里,覆盖角度为60度。该系统发射与接收的地点是分开的,位置相隔100公里,天线阵列尺寸为60x1100米。
YST 个人的评论:
a.报导称这座天波雷达的接收站位于武汉与西安之间某处,相当内陆,不设在靠近海边的原因一方面是避开盲区,另一方面是避免容易遭受空袭。美国的航空母舰和大型水面船只只要进入距离台湾两千公里的海面就会被这座天波雷达侦测到。
b. 800~3000公里的探测距离是英国【简氏防务周刊】的报导,不知来源为何,也不知是真是假。YST 认为这个探测距离虽然勉强够用,但不够安全。如果 YST是系统工程师一定将探测距离至少达到四千公里,而且照射角度会稍微偏北一点务必覆盖包括东京湾与关岛在内的水域,这个要求非常、非常重要而且并不难办到。
c. 这座天波雷达的位置选择非常适中,完全覆盖从东部海面接近中国的任何航道。美国航空母舰如果企图从日本海经对马海峡进入黄海不被发现和追踪是不可能的,唯一剩下的可能途径是绕过菲律宾的南端或是经马六甲海峡进入南海,然后由南海接近中国大陆。
d. 南海相对东海不但非常狭窄而且到处都有岛礁,侦测航空母舰容易得多,黄海就更容易了。黄海基本上一架预警机就可以搞定,南海则麻烦一点,对预警机续航力的要求也高很多,如果单靠预警机至少需要多架。
戊. 中国大陆的地波雷达
大陆在地波雷达也做了相当成功的研发,并且至少已经在海岸线上部署了一套地波雷达(OTH-SW)系统。这套系统也采用了发射地点与接收地点分离的设计,两处相隔2.65公里.外界对中国大陆的地波雷达了解很少,只知道覆盖角度为90度,探测距离大概是三百公里。有关它的性能数据都是猜测,无法做进一步的讨论。雷达数据都是高度机密,外面的人只能知道大概,不可能得到精确的数据。这个地波雷达站完全无缝地覆盖台湾海峡北端的出入口,可惜覆盖不了钓鱼台,更无法探测到琉球群岛。
己. 一些个人见解
a. 一般而言雷达使用的频率越低,雷达的体积就越大,发射的功率也越高,像超视距雷达这样的频率发射功率都在数百万瓦以上,非常耗费能量。
b. 南海海域不是很宽,遍布岛礁,50~100米长的天线阵列建在岛礁上也不成问题,如果能源供应的问题能够解决,解放军在南海的西沙、中沙与南沙的岛礁上各建一座地波雷达站,再配上一、两架预警机填补空隙就可以无缝监视所有在南海主航道上来往的船只。但是能源供应是一个大问题,岛礁上盖一个几百万瓦的发电厂几乎是不可能的,也容易受到破坏。
c. 比 b 更简单、也更安全的方法是在湖南南部的山区建一座天波雷达,不但覆盖整个南海,也覆盖越南、马来西亚、新加坡、文莱、菲律宾和马六甲海峡。
d. YST个人认为天波雷达是反航空母舰舰队最重要的探测手段,也许单凭天波雷达就足够完成搜索、发现与长时间连续跟踪等一系列的任务,其他的侦察手段不过是辅助而已
(十)一些简易的雷达知识与术语
在介绍了超越地平线的雷达后,下一个论述题目本来是长程无人侦察机。但是很多网友非常质疑“天波雷达”侦测与追踪航空母舰的能力,他们认为“天波雷达”的误差能达到好几百公里,根本没有什么实用价值,并指出六0年代苏联的“天波雷达”如何的不成器。如果要以苏联六0年代的雷达能力作为标准,这个系列文章是写不下去的。不要说苏联,即使雷达功力远在苏联之上的美国也是不行的。世界上最早有下视能力的雷达应该是美国的F-15战斗机,首架服役的时间是1974年。所以上世纪的六0年代,无论是哪个国家的天波雷达都不可能用来侦测海面上的船只。雷达,这个人类在二十世纪发明的最伟大的遥测工具,在过去的50年有了天翻地覆的改变。由于 YST认为“天波雷达”是探测航空母舰舰队最关键的感应器,甚至有可能独自完成发现与追踪三千公里外的大型船只这样艰巨的任务,于是有必要在这个时候更深入地讨论一下雷达这个探测器。
YST 将用最基本的常识与最简单的算术来说明现代雷达,特别是“天波雷达”,的价值。
甲. 什么是“分贝”?
譬如我们常听人说:飞机场的噪音是100分贝、地下铁车站当列车经过时的噪音是120分贝、美国洛杉矶级核子潜艇的噪音是110分贝、女人尖叫的声音是80分贝....等等。
这些话到底是什么意思呢?原来科学家和工程师在计算自然现象的过程中常常需要用到比值,也就是两个数量的比有多少倍,这个比值在科学和工程的研究中通常存在一个非常、非常大的范围,譬如从一到一百亿,不但用起来非常不方便,而且制作图表简直就不可能。想想看,有谁能把一和一百亿两个长度同时画在一张图表上让大家都看见?所以科学家就发明了一个新单位叫做“分贝”(英文为 decibel,简写符号为 dB),它的定义如下:
两个数量 P1 与 P2 的比值 P2/P1 用“分贝”来表示就是10 * log (P2/P1) (分贝,dB) ,这里 log 是以 10 为底的对数函数(Logarithmic function)。以 10 为底的对数函数的定义是: 如果 log A = B,那么 10**B = A,这里 10**B 代表 10 的 B 次方。
注:对数的底(base)不是非用10不可,也可以换成其他任何正数,譬如8,但是显然流行不起来,因为绝大部分的人都是十个手指的。不过有一个例外是用极限观念定义的常数 e,e = lim (1 + 1/n)**n ,当 n 接近无限大,此处 lim 代表 limit,就是极限的意思。 e 的值大约是 2.71828, e 的指数函数和以 e 为底的对数函数被数学家发现非常有用。以10 为底的对数函数数学家成为常用对数(common logarithm)。以 e 为底的对数函数数学家成为自然对数(natural logarithm)。好了,现在你就可以看到“分贝”应用的威力了。0 分贝 = 1 倍,也就是相等;3 分贝 = 2.00倍,也就是大约两倍;6 分贝 = 4.00倍,也就是大约4倍;9 分贝 = 8.00倍,也就是大约8倍;10 分贝 = 10倍,也就是正好 10倍;20 分贝 = 100倍,也就是正好 100倍;30 分贝 = 1000倍,也就是正好 1000倍;......100 分贝 = 倍,也就是正好一百亿倍。
你一定会问:说了半天,这个对数和分贝到底有什么好处?回答:对数的好处就是把乘方和开方变成乘除,把乘除变成加减。你说,这省了多少事?想想看,开五次方和除5,那个容易?所以只要一本对数表在手,什么麻烦的计算都变得容易多了,这在还没有手持式计算器的年代是非常有用的计算工具。怪不得钱学森离开美国的时候什么高深的火箭书都没带却带了一本对数表,但是却被联邦调查局的干员没收了,因为他们以为是有关国家机密的密码。“分贝”是比值的单位,说话的人并没有把和什么东西比说出来,所以他们说的话是没有意义的。譬如 YST每次看到大陆网友夸耀“基洛”级潜艇是多么安静,号称“海洋黑洞”,发出的噪音只有 100分贝等等,YST 总是看不懂,因为他们没有指出代表 0分贝的噪音是什么,所以100分贝是没有意义的。不同的作者所用的 0分贝很可能是指不同的东西,这些文章的数字就变得一点意义都没有了。
乙. 电波的频率、周期、震幅与相位
任何波动(无论电波和还是声波)都可以用三角函数来代表,譬如正弦函数(Sine function,数学符号写作 sin x,此处 x 是一个角度)和余弦函数(Cosine function,数学符号写作 cos x,此处 x 是一个角度)。 当电波在传送的时候,有四样东西工程师非常注重,那就是频率(frequency)、波长(period)、震幅(amplitude)与相位(phase)。一个雷达工程师在处理讯号的时候,如果任何时候取样他都能够把握电波讯号的相位(phase),他就可以非常有效地把讯号整合起来然后把它从杂音中分离出来,发现目标和追踪目标就变得非常有效与迅速。
这种能够保留相位讯息(phase information)的雷达叫做“同相雷达”(coherent radar)。
早期的雷达都是非同相的(non-coherent),雷达从非同相(non-coherent)进入到同相(coherent)是一个质的飞跃,一项革命性的进步。早年“非同相雷达”的探测能力跟现代的“同相雷达”相比可以用“天差地远”四个字来形容。同样的“天波雷达”,用六0年代“非同相雷达”的性能来揣摩现代的“同相雷达”会产生严重的误导。六0年代的讯号处理能力与今天的能力相比相差何止十万八千里。
丙. 雷达天线的功率比值图形(antenna pattern)
电磁波的发射和接受都需要经过天线(antenna)。常见的天线有两种:一种是碟型天线(dish antenna),譬如装在屋顶上接收卫星讯号的小耳朵;一种是杆型天线(bar antenna),譬如汽车上收听无线电广播的金属杆。绝大多数的天线不论是哪一种,它们接收讯号的能力跟面对的方向有非常密切的关系。天线设计是非常专业的,里面有很大的学问,成百上千的电机工程师在这上面拿博士学位,每年发表数以百计的研究论文。读者一定吃过海参或是苦瓜,他们身上都长着大小不一肉刺。形象地说,三度空间的天线图就像一个海参或是苦瓜,只是在正前方有一个肉刺特别长大,它就是主瓣。但是这些主瓣以外的“小肉刺”也不能太小看,在雷达作业中它们虽然不是主角但也扮演了非常重要的角色,尤其是在反电子作战(Eclectronic Counter Measure,简称 ECM)和反反电子作战(Eclectronic Counter Counter Measure,简称 ECCM)。它们虽然在接收讯号上比主瓣低了20~40分贝,但是如果遇到强大的干扰电波,经由这些“小肉刺”进入雷达接收器的噪音能量是相当可观的,通常足够淹没讯号,使雷达荧幕上出现一片雪花,什么目标都看不见。
丁. 天线的“加权”(weighting)
天线工程上有一种技巧叫做“加权”(weighting),就是设计天线的工程师在天线不同的部分把讯号做不同程度的放大,这就改变了整个“天线图”。 你一定会问:工程师为什么要这么做呢?答案是:如果不做“加权”的工作,那么第一旁瓣的峰值只比主瓣的峰值低13dB(20倍),这就很容易受到干扰。为了减少这种忧虑,工程师就设计了各种不同的加权来降低所有旁瓣的功率,特别是靠近主瓣附近的区域。经过加权后,旁瓣通常都在30dB以下,甚至可以做到40dB以下,这样被干扰的情况就大大改善了。但是旁瓣变低了,这些被压抑的功率去了哪里呢?答案是:去了主瓣,加权后的主瓣通常会胖一点。
戊. 雷达的波束宽(Radar Beam Width)
雷达工程师最看重的部分是主瓣中功率下降不超过3分贝的部分,也就是功率下降不到一半的部分,这个宽度工程师称它为雷达的“波束宽”(beam width)。每个雷达的波束宽都不一样,所有雷达的照射与探测距离都以波束宽内的主瓣为准,其他部分不予考虑。所以波束宽是雷达性能非常重要的一个指标。当雷达进行搜索的时候,你可以把天线发射的电波看成是一只手电筒放射出去的光束,这个光束的形状是一个发散的圆柱(如果天线是圆形)或四方柱(如果天线是四方形),它的角度就是波束宽(beam width),只有在这个波束照射到的东西雷达才看得见,因为波束宽以外的照射虽然仍有能量但是雷达工程师不予考虑。
雷达的波束宽既然如此重要,那么有没有公式可以计算呢?答案:有的,而且很简单。雷达的波束宽由雷达的波长与天线的长度所决定。如果雷达的波长是 M,天线的长度是 L 或直径是 D ,那么这个雷达的波束宽 W 是 W = 0.88 . M / L radian (如果天线是四方形);W = 1.02 . M / D radian (如果天线是正圆形),1 radian = 57.3 度。
注:大约比波束宽度再宽一倍的地方就是理论上功率为0的零点(英文叫做null)。譬如某个天线的波束宽是10度,也就是说从正前方(boresight)算起,离开它5度的地方接收功率就下降了一半,那么再离开5度的地方就是理论上的零点,在这附近是收不到讯号的。
零点(null)对雷达工程师是很有用的,它遍布于各个方向,就是前面所说的“小肉刺”的根部。在进行电子战时,如果发现敌方用干扰机发射强大的噪音,雷达工程师在计算出干扰源头的方向后就可以重新改变“加权”把某一个零点(null)对准干扰源,干扰电波就不能进入雷达接收器了。这种反干扰的技巧叫做“零点消灭干扰源”(jammer nulling)。
上面计算波束宽度的公式非常重要,只要我们知道某座雷达的发射频率和天线大小,我们就可以算出它的雷达波束宽是几度,进而推算出它的大概性质。 由于频率与波长成反比,上面这个公式告诉我们频率越高波束越窄,天线越大波束也越窄,这个关系是必须知道的常识。波束越窄就越能分辨两个非常接近的目标,这在军事应用上非常重要。这也是为什么只要环境许可,雷达工程师总是要求安装最大的天线。
己. 大陆天波雷达的波束有多宽?
中国大陆的“天波雷达”,它的天线阵列尺寸为 60x1100米。那么,它的波束宽是多少呢? 我们只知道“天波雷达”的频率是3~30MHz,所以波长在10~100米,我们就取中间值假设波长为55米。雷达的运作,水平方位(azimuth)永远比高低方位(elevation)重要,所以合理的假设是天线在水平方位长1100米,在高低方位长60米。根据上面的公式,再假设老共的天线是加权的,我们得到:
水平方位的波束宽 = 1.21.0.88.55/1100 radian = 0.0532 radian = 3.05度;
高低方位的波束宽 = 1.21.0.88.55/60 radian = 0.9761 radian = 55.9度。
所以我们看得很清楚,这座天波雷达的波束是左右非常窄(3.05度),高低非常宽(55.9度)的一个扇形。在3000公里的距离,这座天波雷达照射的范围是
水平方位的长度 = 0. 公里 = 160 公里;
高低方位的长度 = 0. 公里 = 2928 公里。
网友争辩的焦点是在水平方位大陆这座天波雷达照射的范围太宽,超过一百公里,目标可以藏在这个广大的雷达波照射区的任何角落,水平误差因此可以达到一百多公里,这还是假设波长是中间值的55公尺。如果我们采用HF波段最大的100公尺波长,那么天波雷达在三千公里距离的探测误差就有可能超过300公里了。如此大的探测误差是没有实用价值的。
问题:上面这个争论,焦点就在天波雷达的水平距离误差是不是就是它的照射宽度呢?
回答:不是。如果雷达波束的照射宽度就是误差宽度,那么几乎所有火控雷达指挥的火炮都打不到目标了。为了准确回答上面的问题,我们必须进一步讨论雷达追踪是怎么回事。
(十一)雷达的操作模式
雷达因需要的不同在操作上有许多不同的模式(mode),花样繁多,但是最基本的有三个模式:1. 搜寻与发现;2. 边搜寻边追踪;3. 单目标追踪。当然,最现代的雷达还有一种非常有用的模式叫做地面成像(ground mapping mode),其中分辨率最高的一种叫做“合成孔径雷达”(Synthetic Aperture Radar,简称 SAR)。
我们把重点放在最基本的三个模式,它们是每个雷达都具有的模式。
甲. 雷达的搜寻、发现与追踪
A. 搜寻(Search)。雷达搜寻空中或海面的目标,就跟你在黑暗中用手电筒寻找空中的蚊子或地上的一根针是完全一样的。 如果是搜寻空中目标,先决定搜寻范围,譬如左右60度和上下30度,于是先把这个范围正前方的水平方位和高低方位以雷达波束宽为单位划成格子,然后依照顺序一格一格的扫瞄,譬如从左上方开始水平向右扫瞄,扫瞄一列以后,雷达天线在高低方向下降一个波束宽,然后向左扫瞄,到了左边的边界角度,天线再下降一个波束宽,然后向右扫描,...,如此这般直到所有格子都扫描完毕。然后又从左上方重新开始扫描。对海或对地的搜寻也是一样,先决定搜寻范围,譬如左右60度,于是先把这个范围的海面或地面以雷达波束宽为单位划成格子,然后以雷达波束宽为单位依照一定的顺序一排一排地扫瞄。这就是雷达的搜寻工作。
B. 发现(Detection)。任何一个“格子”当雷达波束照射的时候,雷达的接收器(radar receiver)就开始处理从这个“格子”接收到的讯号,经过整合后就得出一个速度与距离的方阵,每一个方阵单元都有距离、速度、功率(power)...等等资料。雷达工程师设计好一个目标取舍的数值标准。任何方阵单元如果探测到的功率(power)超过这个数值就是目标,也就是说,一个目标被发现了,雷达里面的计算机就会通知操作员(譬如发出哔哔声)并且把它的相关资料显示在雷达屏幕上。任何方阵单元如果探测到的功率低于这个数值,计算机就抛弃它,当作什么也没看见。这就是雷达的发现工作。注意,雷达虽然发现了目标,只是把这个目标的相关资料告诉操作员而已,雷达的搜寻工作仍然继续照常进行,完全不受影响。至于雷达操作员看到这个目标后有什么进一步的决定,那是操作员的事,操作员自有一套他自己的标准决定这个目标重不重要。
C. 追踪(Track)
如果操作员觉得某一个被发现的目标很重要,譬如目标接近到某个程度、目标速度特快、目标回波特大等等,操作员便会按下一个钮决定追踪它,于是雷达便进入追踪的模式。追踪的模式有两种,一种是“单目标追踪”(single target track,简称 STT),另一种是“边搜寻边追踪”(track while scan,简称 TWS)。通常是先进行“边搜寻边追踪”,最后可能选定一个做“单目标追踪”。相对于搜寻,追踪模式的过程要复杂非常多。当一个目标被选定追踪,雷达里面的计算机就为它特别设立了一个资料夹(file)并且编号,资料夹里面储存这个目标所有的相关资料。所以每一个被发现的目标都有自己的编号和资料夹。
雷达进入追踪模式的时候会设定一个观察的周期,也就是每隔多久会观察它一次,这个周期是系统工程师选定的,通常短于雷达的扫瞄周期,譬如扫描一次是两分钟,被追踪的目标有可能每20秒就要观察一次,避免它逃脱。当下次观察的时间到了,雷达会把天线转到这个目标预测会出现的方位来确定它还在不在。这个过程说来轻松,其实非常复杂,里面包含很大的学问。
雷达追踪困难的焦点就在:你怎么知道下次看到的目标就是这个目标?
所以雷达追踪技巧的精髓是:雷达软件不但必须预测这个目标下次应该在什么地方出现而且必须给出误差不能大于某个数字。
好了,雷达每次观测同一个目标时不外乎下面三种情形:
1. 如果雷达看到一个目标并且在预测的范围内,雷达就在资料夹填上它的新位置,但是同时保留它的旧位置。理论上,过去观察的位置越多,预测未来的位置也就会越准,一般而言,系统工程师会决定要保留多少个旧位置作为预测下一个位置的基础;
2. 如果雷达什么目标都没有看到,雷达就在资料夹上填写目标消失,并且查看连续消逝了几次。如果次数不到N就决定继续观察并且预测下次它应该在什么地方出现;如果连续消逝的次数达到N,那么雷达的计算机就认为这个目标已经永久消逝了,于是把它的资料夹删除、编号也取消;
3. 如果雷达看到一个目标,但是它不在这个目标预测出现的范围内,计算机也把这个目标当作情况2处理,但是把探测到的目标当成一个新目标,另外设立一个资料夹(file)并且编号。这就是雷达追踪的过程。
D. 几点评论
有几个非常重要的观点读者需要了解,所以我们有必要提出进一步的说明。
1. 追踪数目
读者在阅读军事文章中常常会看到这样的叙述:某型战斗机的火控雷达可以同时追踪20个目标并且选择其中的六个目标进行攻击。这是什么意思呢?在上面我们论述雷达的追踪过程中提到每一个追踪的目标都有一个编了号码的资料夹,里面储藏所有有关这个目标过去的追踪资料和预测下一次观察时它的位置与容许的误差,这里面牵涉的学问叫做“估计理论”(estimation theory),这个估计过程中有一段过滤杂音的手续通常采用一种技巧叫做“卡曼滤波”(Kalman filter),它的计算非常复杂,不是一件简单的事,即使是高速计算机也非常耗费时间。
任何计算机的中央处理器(CPU)的计算能力是有限的。雷达操作所需要的计算很多,通常有一些固定的事情(house keeping work)必须先处理,剩下的时间才能分配到各种操作模式(operating mode)的计算。系统工程师把所有的计算工作都依照优先级加以排列,但是即使最不优先的工作也都必须在某一段时间内完成,这个时间称之为“模式时间”,它也许是10毫秒(milli-seconds)也许是100毫秒,由系统工程师来设定。由于追踪目标每增加一个,计算量就增加很多,系统工程师必须确定所有的计算在规定的时间内能够全部完成,否则就会出乱子。如果计算的时间不够,只有两种解决方法,一是延长“模式时间”,二是限制追踪的数目。延长“模式时间”就要放慢扫瞄速度,如此一来整个雷达的作业能力就要降低,兹事体大,系统工程师通常不愿意。所以剩下的唯一选择就是限制追踪的数目了。也就是说,追踪数目是在扫瞄速度能够接受的情形下的最佳妥协。
所以我们看得很清楚,任何雷达一旦定型,它能够追踪的目标数目是固定的。如果在实际作战中出现的目标超过这个数目,多出来的这些目标雷达就顾不了了,因为追踪数目一旦饱和,雷达软件便不再接受追踪新的目标。
2. 饱和攻击
从“追踪数目”的定义我们就可以看出“饱和攻击”的理论基础是什么。所谓“饱和攻击”就是攻击者的数量超过这个雷达系统能够处理的目标追踪的数目,在这种情形下被攻击者只能听天由命。所以追踪数目是衡量一个雷达优劣的重要指标之一。敌人必须付出大于追踪数目的攻击力量才能进行饱和攻击。
至于同时可以攻击多少个目标主要是跟攻击者携带的导弹数量有关,这倒不是重点,跟雷达的能力无关,因为通常雷达能够追踪的目标数目远大于战斗机携带的武器数目。譬如雷达追踪了20个目标,它会把这20个目标依照威胁程度的大小顺序排列出来提供飞行员决定。如果这架战斗机只携带了两枚中程空空导弹,飞行员顶多也只能够选两个目标攻击;如果这架战斗机携带了20枚中程空空导弹,那么飞行员选择攻击全部20个目标也不是问题。但是今天的战斗机顶多携带八枚空空导弹,其中通常只有一半或顶多六枚是中程的。
军舰携带的导弹数量比飞机多得多,但是早期的军舰对空导弹是装设在可以上下和高低转动的发射架上,一个发射架通常只配置两枚导弹,它们的发射速度很慢因为发射架的转动需要时间,发射后重新填装所需要的时间就更长了,所以军舰能够同时攻击的目标数很低,仍然远低于雷达追踪的数目,防御能力同样是受限于导弹而不是雷达。
但是最新式的军舰装有垂直发射系统,这些导弹都是储藏在垂直发射井中,不但载弹量很大而且可以随时处于发射状态,所以它们的发射的速度非常快。譬如美国“提康德罗加”级导弹巡洋舰(Ticonderoga class guided missile cruiser)携带的对空导弹数量为一百二十二枚而且都在垂直发射井中随时待命,但是神盾雷达系统的追踪能力是达不到一百个目标的,这时候防御的能力就限制在雷达了。
3. 追踪的误差
“边搜寻边追踪”最大的问题就是天线必须不定时地中断扫瞄去照射这些被追踪的目标然后再回到中断的位置继续扫瞄。直到现在绝大多数的雷达是机械转动的,这不但对天线的转动造成负担,而且由于有动量(momentum)的缘故在追踪照射时会造成较大的天线瞄准误差(antenna pointing error),直接导致追踪数据的误差。
相控阵雷达(Phase Array Radar)在“边搜寻边追踪”的模式中它的优越性就立刻显露出来了。由于它是电子转动的,瞄准任何方向可以不到千分之一秒完成,而且没有动量(momentum)的问题,所以具备更迅速与更精确的追踪能力。大型地基雷达在七0年代以后开始有相控雷达,机载雷达有相控雷达则是90年代以后的事了。
无论是传统机械式扫瞄的雷达还是能够电子扫描的相控阵雷达,它们目标定位的误差都比雷达波束宽要小很多,我们在下一节(乙)有详细说明。但是无论是哪一种雷达,最准确的追踪是“单目标追踪”,因为它是连续追踪,在这个模式中天线对目标保持连续照射。
4. 被追踪的目标如何反应
从被雷达照射的目标而言,搜寻、发现、追踪、连续追踪,这些过程的每一个阶段目标感觉到遭受威胁的程度是不同的。如果很长一段时间才被照射一次(譬如每2分钟一次),目标会很安心,因为它知道自己不过是被搜寻而已,有没有被发现还不一定,也许有,也许没有。如果被照射的频率增加(譬如每20秒一次),目标就知道自己不但已经被发现了,而且几乎确定被追踪,警报器这时候会提出警告。如果被连续照射,目标就知道自己不但被追踪而且已经被锁定(单目标追踪)。如果计算机根据电波的特性(waveform)判定这是敌人的火控雷达,那么攻击导弹可能即将发射或已经发射了,这时候警报器一定会发出强烈警告,因为时间上目标本身已是危在分秒而不是旦夕。目标在这个时候一般会采取猛烈的机动企图脱锁(break lock),飞机会进行翻滚,船舰会开启近程防御系统并且采取蛇行来躲避攻击。
乙. 单目标追踪
上一节,我们说的是目标在雷达搜寻、发现与追踪下会采取什么行动。这一节,我们要深入讨论,雷达在“单目标追踪”的运行下做些什么。
雷达的作业无论是搜寻、发现或追踪,只要天线还在不停的扫瞄,测定目标的精确度一般并没有什么差异,但是一旦进入“单目标追踪”(single target track),也就是锁定,那么情形就完全不同了。“单目标追踪”是非常、非常重要的运作,为什么? 答案是:当雷达进行“单目标追踪”的时候,雷达天线不再扫瞄,而是对目标进行持续照射与精确跟踪。
丙. 雷达追踪的角误差
我们在这一节简单扼要地介绍了雷达操作的三个最基本的模式:1. 搜寻与发现;2. 边搜寻边追踪;3. 单目标追踪。
现在让我们为这一节的论述作一个简单的结论:
1. 雷达的目标定位是根据目标测定的角度与距离来决定,前者远比后者重要。
2. 角度追踪(angle track)是所有雷达追踪项目中最基本、最重要、也是必不可少的,远比距离追踪(range track)来得重要,这是因为在很多应用中单凭“角度追踪”(angle track)就足够完成任务,譬如空空导弹。
3. “单目标追踪”(STT)的角度误差非常小,火控雷达的单目标追踪角度误差可以小到低于两百分之一度,这个精确度跟波束宽应该没有什么关系。
4. “边搜寻边追踪”(TWS)的角度误差要比“单目标追踪”(STT)大一些,但是无论如何也远小于雷达波束的宽度。
(十二)中国大陆“天波雷达”探测误差
甲. 水平距离的误差
“天波雷达”的操作跟任何地基雷达的操作完全一样,最先是进行“搜索与发现”模式。如果有目标被发现,计算机会通知操作员(譬如发出哔哔声)并且把目标资料显示出来标示在显示器的地图上。雷达操作员在目标被发现时会根据计算机显示的资料决定这个目标是否重要。如果操作员认为这个目标不重要,他可以忽略它,就当什么事都没发生,雷达继续执行“搜索与发现”模式;如果操作员认为这个目标重要,他可以按下一个钮要求追踪,于是雷达便进入“边搜寻边追踪”(TWS)模式。船只航行的速度很慢,“边搜寻边追踪”通常会进行很长一段时期,至少完成一次或多次搜寻,雷达操作员可以用种种方法(雷达或非雷达)研判所有被发现的目标并且对它们进行识别和威胁评估。
如果操作员找到某个目标,经过一段追踪和识别后,最后研判确定它是一个重要目标而且它的威胁程度最大,譬如一艘航空母舰以高速接近战区并且进入攻击范围,负责作战的总参谋部决定对这个目标发动攻击,这个时候“天波雷达”就可以放弃所有其他的目标,对这艘航空母舰进行“单目标追踪”(STT)。
上面这个决定是非常自然的,攻击航空母舰整个过程不到半小时,即使面临多艘航空母舰的进攻也应该是一次一艘(one at a time),打完一艘再打下一艘,只要选定威胁最大的那一艘发动攻击就可以了,反正战斗不到半小时就结束了,另一艘也跑不远,没有理由同时追踪两艘,所以没有理由在决定攻击后不采取“单目标追踪”的模式。
中国大陆“天波雷达”的水平方向天线阵列长达1100米,同样的接收单元少说有20~30个,有可能多达70~80 个甚至上百个,YST 可以打赌一定是偶数个。这样我们就可以把整个阵列分成右边的一半(正方向)和左边的一半(负方向),并分别计算出它们的功率。
delta = (右边的一半) - (左边的一半);sigma = (右边的一半) + (左边的一半);
每次测量到的目标水平误差角度为OBA = K . delta / sigma,然后天线会修正 C.OBA,0 & C & 1。OBA 会随着追踪的次数很快趋近于0,但不会是0。
问题:到底最后 OBA会有多小呢?
回答:YST 没有实际的数据支持天波雷达的水平误差,YST 不是间谍,连天波雷达的样子都没亲眼见过。不过 YST可以用我的“educated guess”做出合理的估计:
如果X波段 STT能够做到误差小于两百分之一度,HF波段的 STT误差没有理由不能做到小于20分之一度,这已经放大一个数量级了。20分之一度的水平角度误差在3000公里造成的水平距离误差是2.6公里。
如果有读者硬是要说单脉冲雷达的追踪误差跟雷达的波束宽真的有什么关系,譬如波束越窄 OBA的斜率越大,微小的误差因而更容易被修正之类,那么大陆“天波雷达”的波束宽只有3.0度,跟大多数的机载火控雷达在伯仲之间,远小于绝大多数的导弹导引雷达。
譬如美国中程空空导弹AMRAAM-120的直径为18公分、波长为3公分,所以它的波束宽大概在12度左右。如果波束宽就是追踪角度误差的话,那么美国的AMRAAM-120除非瞎猫碰上死耗子,否则不可能打中任何飞机。
如果说“天波雷达”的波段杂音特多,那么系统工程师可以延长讯号整合的时间来取得同样的讯噪比把讯号从杂音中分离出来。这在现代的讯号处理上是完全没有问题的,多一点计算就是了。YST 想不出任何理由在单目标追踪的情况下“天波雷达”的角度误差会比X波段的火控雷达差,放宽一个数量级就应该可以消除所有HF波段可能产生的顾虑。因此2~3公里的水平距离误差是非常合理的。中国大陆的雷达专家高手如云,不可能做不到。
乙. 一些雷达探测的漏洞
工程上的玩意儿是不可能完美的,工程师也是凡人,不可能设计出没有漏洞的雷达,更何况雷达的探测与追踪都是用或然率(probability)来计算的,根本没有百分之百保证的事情,不可能做到密不透风或是万无一失。YST 在这里就举一个例子来说明。当雷达波发射出去,雷达工程师不可能知道在这个波的照射下有多少个目标藏在里面。我们从单脉冲雷达的追踪原理就可以看出雷达工程师千辛万苦计算出来的目标位置其实并不是目标的真正位置而是在同一个脉冲的照射下、同一个距离(range gate)里面所有雷达反射物所形成的“功率中心”(power centroid)。好了,这对敌人就有漏洞可以利用了。
我们看下面这个特殊的战场安排。TG的天波雷达在水平方向的波束宽是3度,所以在4000公里的水平照射距离是213公里。美国的航空母舰可以由一艘驱逐舰在相隔200公里的距离上与这艘航空母舰平行、等速、直线航行,航空母舰与驱逐舰的航行方向都是对准天波雷达的接收方向(也就是武汉与西安之间的某处)。所以无论航行多久,虽然这两艘军舰间隔的距离会渐渐缩短,譬如在航行到距离只有1000公里的时候相距只有50公里,但是对天波雷达而言这两艘军舰始终都在同一个照射波和同一个距离(range gate)里面,所以天波雷达是不可能把这两个目标分开的。根据单脉冲的追踪原理,天波雷达测定的目标角度是航空母舰与驱逐舰的“功率中心”(power centroid),也就是说,如果航空母舰的雷达反射测得的功率是100,驱逐舰测得的功率是1,假设在这个照射波的同样距离内没有任何其他反射物的话,那么天波雷达测定的方向是偏离航空母舰朝向驱逐舰百分之一的方向,也就是说距离在四千公里的时候偏差了两公里,距离在一千公里的时候偏差了五百公尺。
好了,如果驱逐舰上装设了角反射器(corner reflectors)使雷达的反射面跟航空母舰一样大,那么情形就非常严重了。在这种情况下,天波雷达测出的“功率中心”(power centroid)正好是航空母舰与驱逐舰的中间线,所以距离在四千公里的时候偏差了一百公里,两千公里的时候偏差了50公里,即使航空母舰航行到距离已经接近到了一千公里(已经进入中国领海)的时候也偏差了25公里。
美国航空母舰战斗群如果能够做到这个地步,那么中国的天波雷达误差是惊人的,有可能导致任务失败。尤其如果驱逐舰上的角反射器大到航空母舰的10倍(很容易做到),那么天波雷达测定的角度就严重向驱逐舰倾斜了,即使在一千公里的距离误差也可以达到四十五公里,这样的目标追踪是完全失败的。
这种情形在天空中也是一样。譬如中国的驱逐舰向来袭的F/A-18编队发射一枚海红旗9导弹,美机编队的前两架F/A-18立即转头、两机之间相隔一段距离(譬如一百米),然后勇敢地平行(side by side)对准这枚导弹直线飞去。理论上,海红旗9的雷达导引头始终把它的追踪方向对准两架飞机的“功率中心”(power centroid),那个位置事实上空无一物,最后海红旗9一定是在两架飞机之间穿过去而错失所有的目标。
丙. “天波雷达”由于电离层的不稳定所造成的误差
天波雷达的误差一般在20~30公里,但是经过特殊算法,精度可以增加一个数量级,把误差改进到2~3公里。有网友非常死心眼,一定要追问到底是什么特殊算法,非得讲明白否则就不相信。这是很可笑的,YST 不会在这个问题上纠缠下去,但是 YST也不能不说几句话。20~30公里的照射误差是源于电离层的不稳定性,而电离层的不稳定性完全是因为太阳照射程度的不同而产生的。所以只要把太阳的照射和电离层的高度与密度之间的关系搞清楚,就一定可以做出改良,这里面最容易做的就是季节与每天的时辰。六0年代无法做出这些改良,因为测量电离层的手段与效率受到限制,计算机计算的能力也非常有限。现在TG发射了这么多地球资源卫星与地球环境卫星,测量电离层的方法发展出多种不同的手段,能够迅速收集大量数据做分析。如果 YST是系统工程师,只要根据这些资料做成图表,天波雷达在不同的情况下使用不同的参数进行计算,几乎可以保证把误差改良一个数量级。这是常识,是 YST个人合理的“educated guess”,不需要向任何人证明,也不可能得到任何证明。
台湾人的问题就是过份崇拜美国的科技又刻意轻视TG的科技,譬如如果 YST说美国科学家可以透过特殊算法把天波雷达的精确度增加一个数量级,我想没有台湾人会对这个说法有任何怀疑,这就是偏见。
其实TG的科研在某些方面是居于领先地位的,电离层的研究应该是其中之一。中国大陆的基础科学研究有相当扎实的根基,尤其是空间环境的基础物理。譬如武汉大学对电离层与电波传送的研究从八0年代初就开始了,几乎累积了三十年的经验,今天大陆收获的成果是多年辛勤的钻研获得的,不是一夜之间就发现什么奥秘,或是别处可以偷来的。台湾人孤陋寡闻、自己不下功夫、心存偏见又大言不惭。
任何跟军事工程有关的科学数据TG是不可能公布的,YST 个人认为电离层与太阳照射之间的关系就是其中之一。TG不会傻到把这些花大钱搜集到的敏感资料公诸于世。这没什么好奇怪的,对于军事工程的科技数据任何国家的作法都一样,即使卖武器也不会卖敏感资料。譬如美国卖给盟国的飞机其中的雷达软件只给 binary code,盟国的科技人员不但看不懂,而且即使破译了你也连一行 code 都不敢改。美国在军售条约中明文规定,如果 code 被改动,即使只改一行,美国就不负责维修与升级。美国是傻子吗?
我们再举个例子,美国的GPS导航卫星精度非常高,其中一个原因就是美国经营导航卫星的时间最久,搜集到的太空资料与应用细节比任何其他国家都多,这是美国称霸太空的本钱。譬如光压对卫星的影响,美国的研究就比任何其他国家彻底。美国会把这些资料公布吗?当然不会。
所以任何人大叫如果TG不把特殊计算方法公布出来,他就不相信TG科学家能把天波雷达的误差改进到2~3公里。这就非常好笑了,相不相信是他个人的判断,不相信拉倒就是,没有人会企图说服他。就好像美国科学家不会公布光压对卫星的影响如何计算,道理是一样的。台湾网友有本事就要求美国卖给台湾的F-16必须提供雷达的 source code,看看美国会不会理你?
(十三)TG的天波雷达体系
甲. 天波雷达体系
读者不要天真,TG的天波雷达体系不是只有一个雷达站。解放军不是傻瓜,至少大陆那些主持规划天波雷达体系的委员会成员都不是傻瓜。YST 确信的是,TG的天波雷达体系不是只有一个雷达站,而是一个庞大的建筑群,除了有雷达接收天

我要回帖

更多关于 中国打航母的导弹 的文章

 

随机推荐