拌制沥青混凝土拌和站应选什么样的粗骨料

沥青混凝土密度
沥青混凝土密度
范文一:中粒式、细粒式沥青混凝土密度1.多种材料混合结构,按压实混合料干密度泥结碎(砾)石 2.15
计算。单位:t/m3
路面名称 干密度水泥稳定土基层 水泥土 1.75
水泥砂 2.05
水泥砂砾 2.2
水泥碎石 2.1
水泥石屑 2.08
水泥石渣 2.1
水泥碎石土 2.15
水泥砂砾土 2.2石灰稳定土基层 石灰土 1.68
石灰砂砾 2.1
石灰碎石 2.05
石灰砂砾土 2.15石灰稳定土基层 石灰碎石土 2.1
石灰土砂砾 2.15
石灰土碎石 2.1石灰、粉煤灰稳定土基层 石灰粉煤灰 1.17 石灰粉煤灰土 1.45
石灰粉煤灰砂 1.65
石灰粉煤灰砂砾 1.95
石灰粉煤灰碎石 1.92
石灰粉煤灰矿渣 1.65
石灰粉煤灰煤矸石 1.7石灰煤渣稳定土基层 石灰煤渣 1.28
石灰煤渣土 1.48石灰、煤渣稳定土基层 石灰煤渣碎石 1.8 石灰煤渣砂砾 1.8
石灰煤渣矿渣 1.6
石灰煤渣碎石土 1.8
水泥石灰稳定 砂砾 2.1
碎(砾)石 2.1
土砂 1.94粒料改善 砂、粘土 1.9
砾石 2.1嵌锁级配型基、面层 级配碎石 2.2
级配砾石 2.2嵌锁级配型基、面层 填隙碎石 1.98磨耗层 砂土 1.9
级配砂砾 2.2
煤渣 1.6沥青碎石 粗粒式 2.28
中粒式 2.27
细粒式 2.26沥青混凝土 粗粒式 2.37
中粒式 2.36
细粒式 2.35
砂粒式 2.35
砂砾土 1.65
石粉 1.42.各种路面材料松方干密度如下:单位:t/m3材料名称 干密度
粉煤灰 0.75
煤矸石 1.4
碎石土 1.5
天然砂砾 1.3
风化石 1.33.单一材料结构,按压实系数计算。
材料名称 压实系数
砂土 1.25原文地址:中粒式、细粒式沥青混凝土密度1.多种材料混合结构,按压实混合料干密度泥结碎(砾)石 2.15
计算。单位:t/m3
路面名称 干密度水泥稳定土基层 水泥土 1.75
水泥砂 2.05
水泥砂砾 2.2
水泥碎石 2.1
水泥石屑 2.08
水泥石渣 2.1
水泥碎石土 2.15
水泥砂砾土 2.2石灰稳定土基层 石灰土 1.68
石灰砂砾 2.1
石灰碎石 2.05
石灰砂砾土 2.15石灰稳定土基层 石灰碎石土 2.1
石灰土砂砾 2.15
石灰土碎石 2.1石灰、粉煤灰稳定土基层 石灰粉煤灰 1.17 石灰粉煤灰土 1.45
石灰粉煤灰砂 1.65
石灰粉煤灰砂砾 1.95
石灰粉煤灰碎石 1.92
石灰粉煤灰矿渣 1.65
石灰粉煤灰煤矸石 1.7石灰煤渣稳定土基层 石灰煤渣 1.28
石灰煤渣土 1.48石灰、煤渣稳定土基层 石灰煤渣碎石 1.8 石灰煤渣砂砾 1.8
石灰煤渣矿渣 1.6
石灰煤渣碎石土 1.8
水泥石灰稳定 砂砾 2.1
碎(砾)石 2.1
土砂 1.94粒料改善 砂、粘土 1.9
砾石 2.1嵌锁级配型基、面层 级配碎石 2.2
级配砾石 2.2嵌锁级配型基、面层 填隙碎石 1.98磨耗层 砂土 1.9
级配砂砾 2.2
煤渣 1.6沥青碎石 粗粒式 2.28
中粒式 2.27
细粒式 2.26沥青混凝土 粗粒式 2.37
中粒式 2.36
细粒式 2.35
砂粒式 2.35
砂砾土 1.65
石粉 1.42.各种路面材料松方干密度如下:单位:t/m3材料名称 干密度
粉煤灰 0.75
煤矸石 1.4
碎石土 1.5
天然砂砾 1.3
风化石 1.33.单一材料结构,按压实系数计算。
材料名称 压实系数
范文二:沥青混凝土路面密度试验记录(浸水称重法)(编号: 建设项目: 施工单位 试样编号 蜡的密度 3 (g/cm ) Υp) D—24 合同号:施工路段 取样地点 试件在 空气中在重 ( g) ma 试件在 水中重 (g) mω 封蜡后试件在 空气中重 ( g) mp 封蜡后试件 在水中重 (g) mc路面标准密度(g/cm ) 取样名称 路面密度ρ a 或ρ 3 (g/cm ) 测试值f3路面桩号压实度 (%)标准密度备注: 试验:ρ a=ma×ρ ω / ma- mω 计算:Υ f= ma/(mp- mc-(mp- ma)/Υ p) 复核: 审核:ρ f=Υ f×ρωρ ω -常温下水的密度取 1g/cm 监理工程师:3试验日期:
范文三:沥青混凝土路面密度试验记录(浸水称重法)(编号: 建设项目:S3O1 大林线大清桥危桥改造项目 施工单位 濮阳市通华公路工程建设有限公司 试样编号 蜡的密度 3 (g/cm ) Υp) D—24 合同号:DQWQ施工路段 取样地点路面标准密度(g/cm ) 取样名称 封蜡后试件在 空气中重 ( g) mp 封蜡后试件 在水中重 (g) mc 路面密度ρ a 或ρ 3 (g/cm ) 测试值f3路面桩号试件在 空气中在重 ( g) ma试件在 水中重 (g) mω压实度 (%)标准密度备注: 试验:ρ a=ma×ρ ω / ma- mω 计算:Υ f= ma/(mp- mc-(mp- ma)/Υ p) 复核: 审核:ρ f=Υ f×ρωρ ω -常温下水的密度取 1g/cm 监理工程师:3试验日期:
范文四:分类沥青混凝沥青混凝土土按所用结合料不同,可分为石油沥青的和煤沥青的两大类[1];有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒 (5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。2性质沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.075毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。3制备工艺热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。又发展一种先用热沥青拌好湿集料,然后再加热拌匀的方法,以消除因集料在加热和烘干时飞灰。采用后一种工艺时,要防止残留在混合料中的水分影响沥青混凝土使用寿命,最好能同时采用沥青抗剥落剂,以增强抗水能力。4结构形式1 传统的沥青混凝土面层(AC)ps:普通密级配沥青混凝土《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。1.1 按沥青混合料集料的粒径分类1.1.1 细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。在文献资料,考试卷纸中
形式出现1.1.2 中粒式沥青混凝土:AC—16mm或AC—19mm。在文献资料,考试卷纸中
常以AC—16 或AC—19
形式出现1.1.3 粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。在文献资料,考试卷纸中
常以AC—26
形式出现其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。1.2 按沥青混合料压实后的孔隙率大小分类1.2.1 Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%)1.2.2 Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%)c、AM型开级配热拌沥青碎石:孔隙率为(大于10%)其组合原则是:沥青面层至少有一层是Ⅰ型密级配沥青混凝土,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层须采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。2 多碎石沥青混凝土面层(SAC)2.1 产生背景较大流量的车辆在高速公路上安全、舒适高速地通行,沥青面层必须具有良好的抗滑性能。这就要求沥青面层不但要有较大的磨擦系数,而且要有较深的表面构造深度(构造深度是高速行车减低噪音和减少水〖LM〗漂、溅水影响司机视线的主要因素)。研究成果表明:“沥青面层的抗滑性能是由面层结构的微观构造和宏观构造两部分形成。其中宏观构造来源于沥青混合料的配合比,主要由骨料的粗细、级配形式决定”。80年代中期中国开始修筑高等级公路,从沥青面层的结构形式来看:Ⅰ型沥青混凝土,空隙率3%~6%,透水性小,耐久性好,表面层的摩擦系数能达到要求,但表面构造深度较小,远不能达到要求。Ⅱ型沥青混凝土空隙率6%~10%,表面构造深,抗变形能力较强,但其透水性、耐久性较差。为了解决沥青面层的抗滑性能(特别是表面层在构造深度较大的情况下,又具有良好的防水性的结构形式),多碎石沥青混凝土面层被加以研究和使用。2.2 多碎石沥青混凝土面层的特点多碎石沥青混合料是采用较多的粗碎石形成骨架,沥青砂胶填充骨架中的孔隙并使骨架胶合在一起而形成的沥青混合料形式。具体组成为:粗集料含量69%~78%,矿粉6%~10%,油石比5%左右。经几条高等公路的实践证明,多碎石沥青混凝土面层既能提供较深的表面构造,又具有传统Ⅰ型沥青混凝土那样的较小空隙及较小透水性,同时又具有较好的抗形变能力(动稳定度较高)。换言之,“多碎石沥青混凝土既具有传统Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时又避免了两种传统沥青混凝土结构形式的不足。”3 沥青玛蹄脂碎石混合料面层(SMA)3.1 形成背景60年代的德国交通十分发达,根据本国的气候特点(夏季气温20℃左右,冬季不太冷),习惯修筑“浇筑式沥青混凝土”路面。这种结构中沥青含量12%左右,矿粉含量高。使用中发现路面的车辙十分严重,另外当时该国家的汽车为了防滑的需要,经常使用带钉的轮胎(包括欧洲一些国家亦如此),其结果是路面磨耗十分严重(1年可减薄4cm左右)。为了克服日益严重的车辙,减少路面的磨耗,公路工作者对沥青混合料的配合比进行调整,增大粗集料的比例,添加纤维稳定剂,形成了SMA结构的初形。1984年德国交通部门正式制定了一个SMA路面的设计及施工规范,SMA路面结构形式基本得以完善。这种新型的路面结构先后在德国、欧洲一些国家逐渐被推广、运用。90年代初,美国公路界认为其公路路面质量不如欧洲国家的路面质量好。经考察发现存在两个方面的差距:①在改性沥青的运用上;②在路面的结构形式上(即SMA)。年开始加以研究、推广SMA这种结构形式,最典型的是:1995年亚特兰大市为举办奥运会对公路网进行改建和新建,全部采用了SMA这种结构形式做路面。3.2沥青玛蹄脂碎石混合料路面(SMA)的组成原理及特点沥青玛蹄脂碎石混合料(SMA)是一种以沥青、矿粉及纤维稳定剂组成的沥青玛蹄脂结合料,填充于间断级配的矿料骨架中,所形成的骨架密实混合料。其组成特征主要包括两个方面:①含量较多的粗集料互相嵌锁组成高稳定性(抗变形能力强)的结构骨架;②细集料矿粉、沥青和纤维稳定剂组成的沥青玛蹄脂将骨架胶结一起,并填充骨架空隙,使混合料有较好的柔性及耐久性。SMA的结构组成可概括为“三多一少,即:粗集料多、矿粉多、沥青多、细集料少”。具体讲:①SMA是一种间断级配的沥青混合料,5mm以上的粗集料比例高达70%~80%,矿粉的用量达7%~13%,(“粉胶比”超出通常值1.2的限制)。由此形成的间断级配,很少使用细集料;②为加入较多的沥青,一方面增加矿粉用量,同时使用纤维作为稳定剂;③沥青用量较多,高达6.5%~7%,粘结性要求高,并希望选用针入度小、软化点高、温度稳定性好的沥青(最好采用改性沥青)SMA的特点:沥青玛蹄脂碎石混合料是当前国际上公认(使用较多)的一种抗变形能力强,耐久性较好的沥青面层混合料。由于粗集料的良好嵌挤,混合料有非常好的高温抗车辙能力,同时由于沥青玛蹄脂的粘结作用,低温变形性能和水稳定性也有较多的改善。添加纤维稳定剂,使沥青结合料保持高粘度,其摊铺和压实效果较好。间断级配在表面形成大孔隙,构造深度大,抗滑性能好。同时混合料的空隙又很小,耐老化性能及耐久性都很好,从而全面提高了沥青混合料的路面性能。5控制要点( 1 )严格控制配合比:混合料的组成设计严格按设计图纸和《公路路面基层施工技术规范》(JTJ034-93 )要求进行。 二灰土稳定砂砾基层检查项目表 项次 检查项目 规定值或允许偏差 检查方法 1压实度( % ) 98 每 200m 检查 4 处 2 平整度( cm ) 标准值σ 2 最大间隙 h 8 3 高程( mm ) +5 、 –10 每 200m 用水准仪检查 4处 4 宽度( mm ) 不小于设计值 尺量,每 200m 量 4 处 5 厚度( mm ) –8 每 200m 每车道检查 1 点 6 横坡度( % ) ± 0.2 每 200m 用水准仪量4 个断面 7 抗压强度( MPa ) ≥ 1.2 按 JTJ071-94 附录 F( 2 )施工气温低于 5 ℃ 并有浓雾或降雨时,不进行基层施工。( 3 )基层施工中确保排水畅通,表面不允许积水。( 4 )基层碾压完成后,进行养生,养生其不小于 7 天。养生期间行车速度限制在 30km/h 下,但禁止重型车辆和机械通行。[1]
范文五:沥青混凝土沥青混凝土路沥青混凝土(bituminous concrete)俗称沥青砼,是经人工选配具有一定级配组成的矿料(碎石或轧碎砾石、石屑或砂、矿粉等)与一定比例的路用沥青材料,在严格控制条件下拌制而成的混合料。沥青混凝土沥青混凝土按所用结合料不同,可分为石油沥青的和煤沥青的两大类];有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒 (5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.075毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先用热沥青拌好湿集料,然后再加热拌匀的方法,以消除因集料在加热和烘干时飞灰。采用后一种工艺时,要防止残留在混合料中的水分影响沥青混凝土使用寿命,最好能同时采用沥青抗剥落剂,以增强抗水能力。
1 传统的沥青混凝土面层(AC) ps:普通密级配沥青混凝土《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。1.1 按沥青混合料集料的粒径分类1.1.1 细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。1.1.2 中粒式沥青混凝土:AC—16mm或AC—19mm。1.1.3 粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。1.2 按沥青混合料压实后的孔隙率大小分类1.2.1 Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%)1.2.2 Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%)c、AM型开级配热拌沥青碎石:孔隙率为(大于10%)其组合原则是:沥青面层至少有一层是Ⅰ型密级配沥青混凝土,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层须采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。2 多碎石沥青混凝土面层(SAC)2.1 产生背景较大流量的车辆在高速公路上安全、舒适高速地通行,沥青面层必须具有良好的抗滑性能。这就要求沥青面层不但要有较大的磨擦系数,而且要有较深的表面构造深度(构造深度是高速行车减低噪音和减少水〖LM〗漂、溅水影响司机视线的主要因素)。近年来的研究成果表明:“沥青面层的抗滑性能是由面层结构的微观构造和宏观构造两部分形成。其中宏观构造来源于沥青混合料的配合比,主要由骨料的粗细、级配形式决定”。80年代中期中国开始修筑高等级公路,从沥青面层的结构形式来看:Ⅰ型沥青混凝土,空隙率3%~6%,透水性小,耐久性好,表面层的摩擦系数能达到要求,但表面构造深度较小,远不能达到要求。Ⅱ型沥青混凝土空隙率6%~10%,表面构造深,抗变形能力较强,但其透水性、耐久性较差。为了解决沥青面层的抗滑性能(特别是表面层在构造深度较大的情况下,又具有良好的防水性的结构形式),多碎石沥青混凝土面层被加以研究和使用。2.2 多碎石沥青混凝土面层的特点多碎石沥青混合料是采用较多的粗碎石形成骨架,沥青砂胶填充骨架中的孔隙并使骨架胶合在一起而形成的沥青混合料形式。具体组成为:粗集料含量69%~78%,矿粉6%~10%,油石比5%左右。经几条高等公路的实践证明,多碎石沥青混凝土面层既能提供较深的表面构造,又具有传统Ⅰ型沥青混凝土那样的较小空隙及较小透水性,同时又具有较好的抗形变能力(动稳定度较高)。换言之,“多碎石沥青混凝土既具有传统Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时又避免了两种传统沥青混凝土结构形式的不足。”
3 沥青玛蹄脂碎石混合料面层(SMA)3.1 形成背景60年代的德国交通十分发达,根据本国的气候特点(夏季气温20℃左右,冬季不太冷),习惯修筑“浇筑式沥青混凝土”路面。这种结构中沥青含量12%左右,矿粉含量高。使用中发现路面的车辙十分严重,另外当时该国家的汽车为了防滑的需要,经常使用带钉的轮胎(包括欧洲一些国家亦如此),其结果是路面磨耗十分严重(1年可减薄4cm左右)。为了克服日益严重的车辙,减少路面的磨耗,公路工作者对沥青混合料的配合比进行调整,增大粗集料的比例,添加纤维稳定剂,形成了SMA结构的初形。1984年德国交通部门正式制定了一个SMA路面的设计及施工规范,SMA路面结构形式基本得以完善。这种新型的路面结构先后在德国、欧洲一些国家逐渐被推广、运用。90年代初,美国公路界认为其公路路面质量不如欧洲国家的路面质量好。经考察发现存在两个方面的差距:①在改性沥青的运用上;②在路面的结构形式上(即SMA)。年开始加以研究、推广SMA这种结构形式,最典型的是:1995年亚特兰大市为举办奥运会对公路网进行改建和新建,全部采用了SMA这种结构形式做路面。3.2 沥青玛蹄脂碎石混合料路面(SMA)的组成原理及特点沥青玛蹄脂碎石混合料(SMA)是一种以沥青、矿粉及纤维稳定剂组成的沥青玛蹄脂结合料,填充于间断级配的矿料骨架中,所形成的混合料。其组成特征主要包括两个方面:①含量较多的粗集料互相嵌锁组成高稳定性(抗变形能力强)的结构骨架;②细集料矿粉、沥青和纤维稳定剂组成的沥青玛蹄脂将骨架胶结一起,并填充骨架空隙,使混合料有较好的柔性及耐久性。SMA的结构组成可概括为“三多一少,即:粗集料多、矿粉多、沥青多、细集料少”。具体讲:①SMA是一种间断级配的沥青混合料,5mm以上的粗集料比例高达70%~80%,矿粉的用量达7%~13%,(“粉胶比”超出通常值1.2的限制)。由此形成的间断级配,很少使用细集料;②为加入较多的沥青,一方面增加矿粉用量,同时使用纤维作为稳定剂;③沥青用量较多,高达6.5%~7%,粘结性要求高,并希望选用针入度小、软化点高、温度稳定性好的沥青(最好采用改性沥青)SMA的特点:沥青玛蹄脂碎石混合料是当前国际上公认(使用较多)的一种抗变形能力强,耐久性较好的沥青面层混合料。由于粗集料的良好嵌挤,混合料有非常好的高温抗车辙能力,同时由于沥青玛蹄脂的粘结作用,低温变形性能和水稳定性也有较多的改善。添加纤维稳定剂,使沥青结合料保持高粘度,其摊铺和压实效果较好。间断级配在表面形成大孔隙,构造深度大,抗滑性能好。同时混合料的空隙又很小,耐老化性能及耐久性都很好,从而全面提高了沥青混合料的路面性能。4 橡胶沥青(AR)橡胶沥青是先将废旧轮胎原质加工成为橡胶粉粒,再按一定的粗细级配比例进行组合,同时添加多种高聚合物改性剂,并在充分拌合的高温条件下(180℃以上),与基质沥青充分熔胀反应后形成的改性沥青胶结材料。橡胶沥青具有高温稳定性、低温柔韧性、抗老化性、抗疲劳性、抗水损坏性等性能,是较为理想的环保型路面材料,目前主要应用于道路结构中的应力吸收层和表面层中。橡胶沥青经过50年的应用,形成了两个成熟的级配混合料产品系列。与常规沥青混合料相比,橡胶沥青混合料拥有较高的沥青用量(7.5%左右)。⑴开级配混合料(AR-OGFC):由高用量橡胶沥青(9-10%)与单一粒径碎石为主的集料拌合而成。特点及应用:开级配混合料具有良好的抗滑、防溅水、降噪音和持久稳定性,是高速公路和城市快速道路的理想表面层材料。同时开级配混合料突出的抗反射裂缝能力,被广泛用于水泥路面超薄罩面。⑵间断级配混合料(AR-GAP):由中间粒径间断级配与橡胶沥青拌合而成。动稳定度达到3000以上,冻融劈裂值达到80以上。特点及应用:由于具备较好的表面构造、密水性、抗剪切稳定性,间断级配和混合料被普遍用于交叉和变速较多的城市道路面层和补强结构。橡胶沥青路面的性能优势:· 优异的抗疲劳性提高路面的耐久性能;· 由于胶结料含量高、弹性好,提高了路面对疲劳裂缝、反射裂缝的抵抗能力;
· 较强的低温柔韧性减轻了路面的温度敏感性;· 因为胶结料含量高、油膜厚以及轮胎中含有抗氧化剂,故提高了道路抗老化、抗氧化能力;·优异的抗车辙、抗永久变形能力;· 由于道路的耐久性得到提高,使得道路的养护费用显著降低;· 大量使用废旧轮胎,既节约了能源,也有利于环境保护;·橡胶中的炭黑能够使路面黑色长期保存,与标线的对比度高,提高了道路的安全性;
· 橡胶沥青用于沥青混合料时,由于施工厚度薄,施工迅速,缩短了施工时间。
5 Superpave沥青混合料(SUP)Superpave沥青混合料是美国战略公路研究计划(SHRP)的研究成果之一。Superpave是Superior Performing Asphalt Pavement的缩写,中文意思就是“高性能沥青路面”Superpave沥青混合料设计法是一种全新的沥青混合料设计法,包含沥青结合料规范,沥青混合料体积设计方法,计算机软件及相关的使用设备、试验方法和标准。Sperpave混合料设计分为三个水准:混合料体积设计也称水准I设计,使用旋转压实机(SGC)并根据体积设计要求选择沥青用量。混合料中等路面性能水平设计也称水准Ⅱ设计,以混合料体积设计为基础,附加一组SST和IDT试验以达到一系列性能预测。混合料最高路面性能水平设计也称水准Ⅲ设计,以混合料体积设计为基础,附加的SST和IDT试验是在一个较宽温度变化范围内进行试验。由于包含了更广泛的试验范围和结果,完全分析可提供更可靠的性能预测水平。Superpave沥青混合料设计系统是根据项目所在地的气候和设计交通量,把材料选择与混合料设计都集中在体积设计法中,该方法要求在设计沥青路面时,充分考虑在服务期内温度对路面地影响,要求路面在最高设计温度时能满足高温性能地要求,不产生过量地车辙;在路面最低温度时,能满足低温性能地要求,避免或减少低温开裂;在常温范围内控制疲劳开裂。对于沥青结合料,采用旋转薄膜烘箱试验来模拟沥青混合料在拌和和摊铺工程中的老化;采用压力老化容器模拟沥青在路面使用工程中的老化。对于集料,在进行混合料级配设计时,采用控制点和限制区的概念来限定,优选试验级配设计。对于沥青混合料,在拌好后,采用短期老化来模拟沥青混合料在拌和摊铺压实过程中的老化,沥青混合料试件采用旋转压实仪准备。试件压实过程中,记录旋转压实次数与试件高度的关系,从而对沥青混合料体积特性进行评价。所谓Superpave混合料体积设计是根据沥青混合料的空隙率、矿料间隙率、沥青填隙率等体积特性进行热拌沥青混合料设计的,方法主要有设计材料选择、沥青混合料拌和、沥青混合料体积分析以及混合料验证,包括体积性质和水敏感性。沥青混合料体积设计过程主要由四部分组成:①材料选择;②集料级配选择;③确定沥青混合料最佳沥青含量;④评估沥青混合料的验证,包括体积性质和水敏感性。Suerpave沥青混合料体积设计法对材料、集料级配、混合料均有严格的规定,并制定了相应的严格规范要求,包括胶结料规范、集料规范、混合料规范。6 SBS改性沥青混凝土(SBS)SBS改性沥青是在原有基质沥青的基础上,掺加2.5%、3.0%、4.0%的SBS改性剂,改性后的沥青,与原沥青相比,其高温粘度增大,软化点升高。在良好的设计配合比和施工条件下,沥青路面的耐久性和高温稳定性明显提高。改性沥青及其效果评价指标所谓改性沥青,也包括改性沥青混合料,是指“掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料的性能得以改善而制成的沥青结合料”。改性剂是指“在沥青或沥青混合料中加入的天然的或人工的有机或无机材料,可熔融、分散在沥青中,改善或提高沥青路面性能(与沥青发生反应或裹覆在集料表面上)的材料”。改性效果的好坏,主要用改性沥青指标来进行评价,改性沥青的评价指标为:⑴感温性指标:针入度指数(针入度)。⑵低温性能指标:5℃延度和当量脆点。⑶高温性能指标:60℃粘度、软化点与当量软化点。⑷热稳定性(耐老化)指标:旋转薄膜烘箱试验。⑸沥青粘弹效应指标:弹性恢复。⑥沥青与集料握裹力指标:粘韧性试验。⑦施工及安全指标:闪点、135℃运动粘度。⑧离析指标:软化点差。
7 热压式沥青混凝土(HRA)热压式沥青混凝土路面(Hot Rolled Asphalt Pavement,HRA)作为一种独特的沥青混凝土路面形式,在英国得到了广泛的应用。沥青混凝土拌和站是生产沥青混凝土的、主要用在公路上的设备。主要功能是把沥青,石子等材料按一定的比划混合在一起,高温加热到150度的设备.再用摊铺机铺到建设的高速路上.
范文六:沥青混凝土铺面道路,或又俗称为柏油路、沥青路,是一种被广泛使用的道路路面。虽然有时仍被称为柏油路,但是因为柏油对健康的危害,现在铺设柏油道路已经弃用柏油改用沥青。铺设柏油道路所需材料有级配粒料、碎石级配、沥青胶泥、骨材、石粉等。所需工具有平路机、挖土机、震动碾压机、卡车、刮路机、沥青洒播机、铺装机、压力泼油车等。基本上可以分为“施工前准备”、“碎石级配铺设”、“沥青混凝土厚度控制”、“黏层或透层浇铺”、“沥青混凝土铺设”等五大步骤。基本信息中文名称沥青混凝土外文名称Bituminous concrete别名沥青砼 ? ? ?? 配料矿料,沥青制备工艺在集中地点用机械拌制用途修筑公路路面 ? ?目录1 基本介绍2 基本配料3 结构形式4 制备工艺2 基本配料沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.075毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。3 结构形式1 传统的沥青混凝土面层(AC) ps:普通密级配沥青混凝土《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。1.1 按沥青混合料集料的粒径分类1.1.1 细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。1.1.2 中粒式沥青混凝土:AC—16mm或AC—19mm。1.1.3 粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。1.2 按沥青混合料压实后的孔隙率大小分类1.2.1 Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%)1.2.2 Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%)c、AM型开级配热拌沥青碎石:孔隙率为(大于10%)其组合原则是:沥青面层至少有一层是Ⅰ型密级配沥青混凝土,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层须采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。2 多碎石沥青混凝土面层(SAC)2.1 产生背景较大流量的车辆在高速公路上安全、舒适高速地通行,沥青面层必须具有良好的抗滑性能。这就要求沥青面层不但要有较大的磨擦系数,而且要有较深的表面构造深度(构造深度是高速行车减低噪音和减少水〖LM〗漂、溅水影响司机视线的主要因素)。近年来的研究成果表明:“沥青面层的抗滑性能是由面层结构的微观构造和宏观构造两部分形成。其中宏观构造来源于沥青混合料的配合比,主要由骨料的粗细、级配形式决定”。80年代中期我国开始修筑高等级公路,从沥青面层的结构形式来看:Ⅰ型沥青混凝土,空隙率3%~6%,透水性小,耐久性好,表面层的摩擦系数能达到要求,但表面构造深度较小,远不能达到要求。Ⅱ型沥青混凝土空隙率6%~10%,表面构造深,抗变形能力较强,但其透水性、耐久性较差。为了解决沥青面层的抗滑性能(特别是表面层在构造深度较大的情况下,又具有良好的防水性的结构形式),多碎石沥青混凝土面层被加以研究和使用。2.2 多碎石沥青混凝土面层的特点多碎石沥青混合料是采用较多的粗碎石形成骨架,沥青砂胶填充骨架中的孔隙并使骨架胶合在一起而形成的沥青混合料形式。具体组成为:粗集料含量69%~78%,矿粉6%~10%,油石比5%左右。经几条高等公路的实践证明,多碎石沥青混凝土面层既能提供较深的表面构造,又具有传统Ⅰ型沥青混凝土那样的较小空隙及较小透水性,同时又具有较好的抗形变能力(动稳定度较高)。换言之,“多碎石沥青混凝土既具有传统Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时又避免了两种传统沥青混凝土结构形式的不足。”
3 沥青玛蹄脂碎石混合料面层(SMA)3.1 形成背景60年代的德国交通十分发达,根据本国的气候特点(夏季气温20℃左右,冬季不太冷),习惯修筑“浇筑式沥青混凝土”路面。这种结构中沥青含量12%左右,矿粉含量高。使用中发现路面的车辙十分严重,另外当时该国家的汽车为了防滑的需要,经常使用带钉的轮胎(包括欧洲一些国家亦如此),其结果是路面磨耗十分严重(1年可减薄4cm左右)。为了克服日益严重的车辙,减少路面的磨耗,公路工作者对沥青混合料的配合比进行调整,增大粗集料的比例,添加纤维稳定剂,形成了SMA结构的初形。1984年德国交通部门正式制定了一个SMA路面的设计及施工规范,SMA路面结构形式基本得以完善。这种新型的路面结构先后在德国、欧洲一些国家逐渐被推广、运用。90年代初,美国公路界认为其公路路面质量不如欧洲国家的路面质量好。经考察发现存在两个方面的差距:①在改性沥青的运用上;②在路面的结构形式上(即SMA)。年开始加以研究、推广SMA这种结构形式,最典型的是:1995年亚特兰大市为举办奥运会对公路网进行改建和新建,全部采用了SMA这种结构形式做路面。3.2 沥青玛蹄脂碎石混合料路面(SMA)的组成原理及特点沥青玛蹄脂碎石混合料(SMA)是一种以沥青、矿粉及纤维稳定剂组成的沥青玛蹄脂结合料,填充于间断级配的矿料骨架中,所形成的混合料。其组成特征主要包括两个方面:①含量较多的粗集料互相嵌锁组成高稳定性(抗变形能力强)的结构骨架;②细集料矿粉、沥青和纤维稳定剂组成的沥青玛蹄脂将骨架胶结一起,并填充骨架空隙,使混合料有较好的柔性及耐久性。SMA的结构组成可概括为“三多一少,即:粗集料多、矿粉多、沥青多、细集料少”。具体讲:①SMA是一种间断级配的沥青混合料,5mm以上的粗集料比例高达70%~80%,矿粉的用量达7%~13%,(“粉胶比”超出通常值1.2的限制)。由此形成的间断级配,很少使用细集料;②为加入较多的沥青,一方面增加矿粉用量,同时使用纤维作为稳定剂;③沥青用量较多,高达6.5%~7%,粘结性要求高,并希望选用针入度小、软化点高、温度稳定性好的沥青(最好采用改性沥青)SMA的特点:沥青玛蹄脂碎石混合料是当前国际上公认(使用较多)的一种抗变形能力强,耐久性较好的沥青面层混合料。由于粗集料的良好嵌挤,混合料有非常好的高温抗车辙能力,同时由于沥青玛蹄脂的粘结作用,低温变形性能和水稳定性也有较多的改善。添加纤维稳定剂,使沥青结合料保持高粘度,其摊铺和压实效果较好。间断级配在表面形成大孔隙,构造深度大,抗滑性能好。同时混合料的空隙又很小,耐老化性能及耐久性都很好,从而全面提高了沥青混合料的路面性能。4 橡胶沥青(AR)橡胶沥青是先将废旧轮胎原质加工成为橡胶粉粒,再按一定的粗细级配比例进行组合,同时添加多种高聚合物改性剂,并在充分拌合的高温条件下(180℃以上),与基质沥青充分熔胀反应后形成的改性沥青胶结材料。橡胶沥青具有高温稳定性、低温柔韧性、抗老化性、抗疲劳性、抗水损坏性等性能,是较为理想的环保型路面材料,目前主要应用于道路结构中的应力吸收层和表面层中。橡胶沥青经过50年的应用,形成了两个成熟的级配混合料产品系列。与常规沥青混合料相比,橡胶沥青混合料拥有较高的沥青用量(7.5%左右)。(1)开级配混合料(AR-OGFC):由高用量橡胶沥青(9-10%)与单一粒径碎石为主的集料拌合而成。特点及应用:开级配混合料具有良好的抗滑、防溅水、降噪音和持久稳定性,是高速公路和城市快速道路的理想表面层材料。同时开级配混合料突出的抗反射裂缝能力,被广泛用于水泥路面超薄罩面。(2)间断级配混合料(AR-GAP):由中间粒径间断级配与橡胶沥青拌合而成。动稳定度达到3000以上,冻融劈裂值达到80以上。特点及应用:由于具备较好的表面构造、密水性、抗剪切稳定性,间断级配和混合料被普遍用于交叉和变速较多的城市道路面层和补强结构。橡胶沥青路面的性能优势:· 优异的抗疲劳性提高路面的耐久性能;· 由于胶结料含量高、弹性好,提高了路面对疲劳裂缝、反射裂缝的抵抗能力;
· 较强的低温柔韧性减轻了路面的温度敏感性;· 因为胶结料含量高、油膜厚以及轮胎中含有抗氧化剂,故提高了道路抗老化、抗氧化能力;·优异的抗车辙、抗永久变形能力;· 由于道路的耐久性得到提高,使得道路的养护费用显著降低;· 大量使用废旧轮胎,既节约了能源,也有利于环境保护;·橡胶中的炭黑能够使路面黑色长期保存,与标线的对比度高,提高了道路的安全性;
· 橡胶沥青用于沥青混合料时,由于施工厚度薄,施工迅速,缩短了施工时间。
5 Superpave沥青混合料(SUP)Superpave沥青混合料是美国战略公路研究计划(SHRP)的研究成果之一。 Superpave是Superior Performing Asphalt Pavement的缩写,中文意思就是“高性能沥青路面”Superpave沥青混合料设计法是一种全新的沥青混合料设计法,包含沥青结合料规范,沥青混合料体积设计方法,计算机软件及相关的使用设备、试验方法和标准。Sperpave混合料设计分为三个水准: 混合料体积设计也称水准I设计,使用旋转压实机(SGC)并根据体积设计要求选择沥青用量。 混合料中等路面性能水平设计也称水准II设计,以混合料体积设计为基础,附加一组SST和IDT试验以达到一系列性能预测。 混合料最高路面性能水平设计也称水准III设计,以混合料体积设计为基础,附加的SST和IDT试验是在一个较宽温度变化范围内进行试验。由于包含了更广泛的试验范围和结果,完全分析可提供更可靠的性能预测水平。 Superpave沥青混合料设计系统是根据项目所在地的气候和设计交通量,把材料选择与混合料设计都集中在体积设计法中,该方法要求在设计沥青路面时,充分考虑在服务期内温度对路面地影响,要求路面在最高设计温度时能满足高温性能地要求,不产生过量地车辙;在路面最低温度时,能满足低温性能地要求,避免或减少低温开裂;在常温范围内控制疲劳开裂。对于沥青结合料,采用旋转薄膜烘箱试验来模拟沥青混合料在拌和和摊铺工程中的老化;采用压力老化容器模拟沥青在路面使用工程中的老化。对于集料,在进行混合料级配设计时,采用控制点和限制区的概念来限定,优选试验级配设计。对于沥青混合料,在拌好后,采用短期老化来模拟沥青混合料在拌和摊铺压实过程中的老化,沥青混合料试件采用旋转压实仪准备。试件压实过程中,记录旋转压实次数与试件高度的关系,从而对沥青混合料体积特性进行评价。 所谓Superpave混合料体积设计是根据沥青混合料的空隙率、矿料间隙率、沥青填隙率等体积特性进行热拌沥青混合料设计的,方法主要有设计材料选择、沥青混合料拌和、沥青混合料体积分析以及混合料验证,包括体积性质和水敏感性。沥青混合料体积设计过程主要由四部分组成:①材料选择;②集料级配选择;③确定沥青混合料最佳沥青含量;④评估沥青混合料的验证,包括体积性质和水敏感性。 Suerpave沥青混合料体积设计法对材料、集料级配、混合料均有严格的规定,并制定了相应的严格规范要求,包括胶结料规范、集料规范、混合料规范。6 SBS改性沥青混凝土(SBS)SBS改性沥青是在原有基质沥青的基础上,掺加2.5%、3.0%、4.0%的SBS改性剂,改性后的沥青,与原沥青相比,其高温粘度增大,软化点升高。在良好的设计配合比和施工条件下,沥青路面的耐久性和高温稳定性明显提高。改性沥青及其效果评价指标所谓改性沥青,也包括改性沥青混合料,是指“掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料的性能得以改善而制成的沥青结合料”。改性剂是指“在沥青或沥青混合料中加入的天然的或人工的有机或无机材料,可熔融、分散在沥青中,改善或提高沥青路面性能(与沥青发生反应或裹覆在集料表面上)的材料”。改性效果的好坏,主要用改性沥青指标来进行评价,改性沥青的评价指标为:(1)感温性指标:针入度指数(针入度)。(2)低温性能指标:5℃延度和当量脆点。(3)高温性能指标:60℃粘度、软化点与当量软化点。(4)热稳定性(耐老化)指标:旋转薄膜烘箱试验。(5)沥青粘弹效应指标:弹性恢复。⑥沥青与集料握裹力指标:粘韧性试验。⑦施工及安全指标:闪点、135℃运动粘度。⑧离析指标:软化点差。
7 热压式沥青混凝土(HRA)热压式沥青混凝土路面(Hot Rolled Asphalt Pavement,HRA)作为一种独特的沥青混凝土路面形式,在英国得到了广泛的应用。4 制备工艺热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先用热沥青拌好湿集料,然后再加热拌匀的方法,以消除因集料在加热和烘干时飞灰。采用后一种工艺时,要防止残留在混合料中的水分影响沥青混凝土使用寿命,最好能同时采用沥青抗剥落剂,以增强抗水能力。沥青混凝土铺面道路,或又俗称为柏油路、沥青路,是一种被广泛使用的道路路面。虽然有时仍被称为柏油路,但是因为柏油对健康的危害,现在铺设柏油道路已经弃用柏油改用沥青。铺设柏油道路所需材料有级配粒料、碎石级配、沥青胶泥、骨材、石粉等。所需工具有平路机、挖土机、震动碾压机、卡车、刮路机、沥青洒播机、铺装机、压力泼油车等。基本上可以分为“施工前准备”、“碎石级配铺设”、“沥青混凝土厚度控制”、“黏层或透层浇铺”、“沥青混凝土铺设”等五大步骤。基本信息中文名称沥青混凝土外文名称Bituminous concrete别名沥青砼 ? ? ?? 配料矿料,沥青制备工艺在集中地点用机械拌制用途修筑公路路面 ? ?目录1 基本介绍2 基本配料3 结构形式4 制备工艺2 基本配料沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.075毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。3 结构形式1 传统的沥青混凝土面层(AC) ps:普通密级配沥青混凝土《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。1.1 按沥青混合料集料的粒径分类1.1.1 细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。1.1.2 中粒式沥青混凝土:AC—16mm或AC—19mm。1.1.3 粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。1.2 按沥青混合料压实后的孔隙率大小分类1.2.1 Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%)1.2.2 Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%)c、AM型开级配热拌沥青碎石:孔隙率为(大于10%)其组合原则是:沥青面层至少有一层是Ⅰ型密级配沥青混凝土,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层须采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。2 多碎石沥青混凝土面层(SAC)2.1 产生背景较大流量的车辆在高速公路上安全、舒适高速地通行,沥青面层必须具有良好的抗滑性能。这就要求沥青面层不但要有较大的磨擦系数,而且要有较深的表面构造深度(构造深度是高速行车减低噪音和减少水〖LM〗漂、溅水影响司机视线的主要因素)。近年来的研究成果表明:“沥青面层的抗滑性能是由面层结构的微观构造和宏观构造两部分形成。其中宏观构造来源于沥青混合料的配合比,主要由骨料的粗细、级配形式决定”。80年代中期我国开始修筑高等级公路,从沥青面层的结构形式来看:Ⅰ型沥青混凝土,空隙率3%~6%,透水性小,耐久性好,表面层的摩擦系数能达到要求,但表面构造深度较小,远不能达到要求。Ⅱ型沥青混凝土空隙率6%~10%,表面构造深,抗变形能力较强,但其透水性、耐久性较差。为了解决沥青面层的抗滑性能(特别是表面层在构造深度较大的情况下,又具有良好的防水性的结构形式),多碎石沥青混凝土面层被加以研究和使用。2.2 多碎石沥青混凝土面层的特点多碎石沥青混合料是采用较多的粗碎石形成骨架,沥青砂胶填充骨架中的孔隙并使骨架胶合在一起而形成的沥青混合料形式。具体组成为:粗集料含量69%~78%,矿粉6%~10%,油石比5%左右。经几条高等公路的实践证明,多碎石沥青混凝土面层既能提供较深的表面构造,又具有传统Ⅰ型沥青混凝土那样的较小空隙及较小透水性,同时又具有较好的抗形变能力(动稳定度较高)。换言之,“多碎石沥青混凝土既具有传统Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时又避免了两种传统沥青混凝土结构形式的不足。”
3 沥青玛蹄脂碎石混合料面层(SMA)3.1 形成背景60年代的德国交通十分发达,根据本国的气候特点(夏季气温20℃左右,冬季不太冷),习惯修筑“浇筑式沥青混凝土”路面。这种结构中沥青含量12%左右,矿粉含量高。使用中发现路面的车辙十分严重,另外当时该国家的汽车为了防滑的需要,经常使用带钉的轮胎(包括欧洲一些国家亦如此),其结果是路面磨耗十分严重(1年可减薄4cm左右)。为了克服日益严重的车辙,减少路面的磨耗,公路工作者对沥青混合料的配合比进行调整,增大粗集料的比例,添加纤维稳定剂,形成了SMA结构的初形。1984年德国交通部门正式制定了一个SMA路面的设计及施工规范,SMA路面结构形式基本得以完善。这种新型的路面结构先后在德国、欧洲一些国家逐渐被推广、运用。90年代初,美国公路界认为其公路路面质量不如欧洲国家的路面质量好。经考察发现存在两个方面的差距:①在改性沥青的运用上;②在路面的结构形式上(即SMA)。年开始加以研究、推广SMA这种结构形式,最典型的是:1995年亚特兰大市为举办奥运会对公路网进行改建和新建,全部采用了SMA这种结构形式做路面。3.2 沥青玛蹄脂碎石混合料路面(SMA)的组成原理及特点沥青玛蹄脂碎石混合料(SMA)是一种以沥青、矿粉及纤维稳定剂组成的沥青玛蹄脂结合料,填充于间断级配的矿料骨架中,所形成的混合料。其组成特征主要包括两个方面:①含量较多的粗集料互相嵌锁组成高稳定性(抗变形能力强)的结构骨架;②细集料矿粉、沥青和纤维稳定剂组成的沥青玛蹄脂将骨架胶结一起,并填充骨架空隙,使混合料有较好的柔性及耐久性。SMA的结构组成可概括为“三多一少,即:粗集料多、矿粉多、沥青多、细集料少”。具体讲:①SMA是一种间断级配的沥青混合料,5mm以上的粗集料比例高达70%~80%,矿粉的用量达7%~13%,(“粉胶比”超出通常值1.2的限制)。由此形成的间断级配,很少使用细集料;②为加入较多的沥青,一方面增加矿粉用量,同时使用纤维作为稳定剂;③沥青用量较多,高达6.5%~7%,粘结性要求高,并希望选用针入度小、软化点高、温度稳定性好的沥青(最好采用改性沥青)SMA的特点:沥青玛蹄脂碎石混合料是当前国际上公认(使用较多)的一种抗变形能力强,耐久性较好的沥青面层混合料。由于粗集料的良好嵌挤,混合料有非常好的高温抗车辙能力,同时由于沥青玛蹄脂的粘结作用,低温变形性能和水稳定性也有较多的改善。添加纤维稳定剂,使沥青结合料保持高粘度,其摊铺和压实效果较好。间断级配在表面形成大孔隙,构造深度大,抗滑性能好。同时混合料的空隙又很小,耐老化性能及耐久性都很好,从而全面提高了沥青混合料的路面性能。4 橡胶沥青(AR)橡胶沥青是先将废旧轮胎原质加工成为橡胶粉粒,再按一定的粗细级配比例进行组合,同时添加多种高聚合物改性剂,并在充分拌合的高温条件下(180℃以上),与基质沥青充分熔胀反应后形成的改性沥青胶结材料。橡胶沥青具有高温稳定性、低温柔韧性、抗老化性、抗疲劳性、抗水损坏性等性能,是较为理想的环保型路面材料,目前主要应用于道路结构中的应力吸收层和表面层中。橡胶沥青经过50年的应用,形成了两个成熟的级配混合料产品系列。与常规沥青混合料相比,橡胶沥青混合料拥有较高的沥青用量(7.5%左右)。(1)开级配混合料(AR-OGFC):由高用量橡胶沥青(9-10%)与单一粒径碎石为主的集料拌合而成。特点及应用:开级配混合料具有良好的抗滑、防溅水、降噪音和持久稳定性,是高速公路和城市快速道路的理想表面层材料。同时开级配混合料突出的抗反射裂缝能力,被广泛用于水泥路面超薄罩面。(2)间断级配混合料(AR-GAP):由中间粒径间断级配与橡胶沥青拌合而成。动稳定度达到3000以上,冻融劈裂值达到80以上。特点及应用:由于具备较好的表面构造、密水性、抗剪切稳定性,间断级配和混合料被普遍用于交叉和变速较多的城市道路面层和补强结构。橡胶沥青路面的性能优势:· 优异的抗疲劳性提高路面的耐久性能;· 由于胶结料含量高、弹性好,提高了路面对疲劳裂缝、反射裂缝的抵抗能力;
· 较强的低温柔韧性减轻了路面的温度敏感性;· 因为胶结料含量高、油膜厚以及轮胎中含有抗氧化剂,故提高了道路抗老化、抗氧化能力;·优异的抗车辙、抗永久变形能力;· 由于道路的耐久性得到提高,使得道路的养护费用显著降低;· 大量使用废旧轮胎,既节约了能源,也有利于环境保护;·橡胶中的炭黑能够使路面黑色长期保存,与标线的对比度高,提高了道路的安全性;
· 橡胶沥青用于沥青混合料时,由于施工厚度薄,施工迅速,缩短了施工时间。
5 Superpave沥青混合料(SUP)Superpave沥青混合料是美国战略公路研究计划(SHRP)的研究成果之一。 Superpave是Superior Performing Asphalt Pavement的缩写,中文意思就是“高性能沥青路面”Superpave沥青混合料设计法是一种全新的沥青混合料设计法,包含沥青结合料规范,沥青混合料体积设计方法,计算机软件及相关的使用设备、试验方法和标准。Sperpave混合料设计分为三个水准: 混合料体积设计也称水准I设计,使用旋转压实机(SGC)并根据体积设计要求选择沥青用量。 混合料中等路面性能水平设计也称水准II设计,以混合料体积设计为基础,附加一组SST和IDT试验以达到一系列性能预测。 混合料最高路面性能水平设计也称水准III设计,以混合料体积设计为基础,附加的SST和IDT试验是在一个较宽温度变化范围内进行试验。由于包含了更广泛的试验范围和结果,完全分析可提供更可靠的性能预测水平。 Superpave沥青混合料设计系统是根据项目所在地的气候和设计交通量,把材料选择与混合料设计都集中在体积设计法中,该方法要求在设计沥青路面时,充分考虑在服务期内温度对路面地影响,要求路面在最高设计温度时能满足高温性能地要求,不产生过量地车辙;在路面最低温度时,能满足低温性能地要求,避免或减少低温开裂;在常温范围内控制疲劳开裂。对于沥青结合料,采用旋转薄膜烘箱试验来模拟沥青混合料在拌和和摊铺工程中的老化;采用压力老化容器模拟沥青在路面使用工程中的老化。对于集料,在进行混合料级配设计时,采用控制点和限制区的概念来限定,优选试验级配设计。对于沥青混合料,在拌好后,采用短期老化来模拟沥青混合料在拌和摊铺压实过程中的老化,沥青混合料试件采用旋转压实仪准备。试件压实过程中,记录旋转压实次数与试件高度的关系,从而对沥青混合料体积特性进行评价。 所谓Superpave混合料体积设计是根据沥青混合料的空隙率、矿料间隙率、沥青填隙率等体积特性进行热拌沥青混合料设计的,方法主要有设计材料选择、沥青混合料拌和、沥青混合料体积分析以及混合料验证,包括体积性质和水敏感性。沥青混合料体积设计过程主要由四部分组成:①材料选择;②集料级配选择;③确定沥青混合料最佳沥青含量;④评估沥青混合料的验证,包括体积性质和水敏感性。 Suerpave沥青混合料体积设计法对材料、集料级配、混合料均有严格的规定,并制定了相应的严格规范要求,包括胶结料规范、集料规范、混合料规范。6 SBS改性沥青混凝土(SBS)SBS改性沥青是在原有基质沥青的基础上,掺加2.5%、3.0%、4.0%的SBS改性剂,改性后的沥青,与原沥青相比,其高温粘度增大,软化点升高。在良好的设计配合比和施工条件下,沥青路面的耐久性和高温稳定性明显提高。改性沥青及其效果评价指标所谓改性沥青,也包括改性沥青混合料,是指“掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料的性能得以改善而制成的沥青结合料”。改性剂是指“在沥青或沥青混合料中加入的天然的或人工的有机或无机材料,可熔融、分散在沥青中,改善或提高沥青路面性能(与沥青发生反应或裹覆在集料表面上)的材料”。改性效果的好坏,主要用改性沥青指标来进行评价,改性沥青的评价指标为:(1)感温性指标:针入度指数(针入度)。(2)低温性能指标:5℃延度和当量脆点。(3)高温性能指标:60℃粘度、软化点与当量软化点。(4)热稳定性(耐老化)指标:旋转薄膜烘箱试验。(5)沥青粘弹效应指标:弹性恢复。⑥沥青与集料握裹力指标:粘韧性试验。⑦施工及安全指标:闪点、135℃运动粘度。⑧离析指标:软化点差。
7 热压式沥青混凝土(HRA)热压式沥青混凝土路面(Hot Rolled Asphalt Pavement,HRA)作为一种独特的沥青混凝土路面形式,在英国得到了广泛的应用。4 制备工艺热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先用热沥青拌好湿集料,然后再加热拌匀的方法,以消除因集料在加热和烘干时飞灰。采用后一种工艺时,要防止残留在混合料中的水分影响沥青混凝土使用寿命,最好能同时采用沥青抗剥落剂,以增强抗水能力。
范文七:摘
要:文章通过对高等级公路沥青路面的施工实践,分析可影响路面平整度的原因,并提出了控制沥青路面平整度的措施。关键词:沥青路面;平整度;控制随着我国经济的发展,道路是人们的主要通行方式,人们在对生活条件的逐步提高上,也对公路质量的要求更加严格,行驶在更加舒适的道路上已经是人们的大的要求方向。如何控制路面平整度就是公路工程建设需要注意的问题。文章结合施工中的实践经验,下面就路面平整度的控制方法提出了几点:1 道路的不平整的弊端路面的不平整,行驶过程中车辆颠簸,对行车速度及乘客舒适度有很大影响;而且在不平整路面容易积水,积水被渗入路面,在不断行车荷载的作用下,造成局部损坏,时间久了还会造成路面结构层的破坏。2.基层施工质量的影响①确保厂拌混合料摊铺机铺筑。对新建路面工程,对基层混合料及铺筑设备要重视,采用厂拌混合料,摊铺机进行摊铺,在施工中要注意标高控制,碾压要到位,对设计厚度超过30cm者可分二层铺筑,摊铺宽度控制在6~8m时平整度效果较好。②控制混合料的最大粒径及含水量。为提高基层平整度及方便摊铺机铺筑,基层混合料集料最大粒径宜适当减小。因为集料粒径越大,混合料越易产生离析。因此,适当减小集料最大粒粒径,有利于摊铺机作业和基层顶面平整度的提高。③基层养护要到位。对于摊铺后的养护,要按规范要求,强度达到后方可铺筑面层,最少要达到七天养护。3沥青路面混合料的生产沥青混合料拌合站的生产能力及成品料的质量是影响路面平整度的第一环节。当沥青拌和站的生产能力与摊铺机的摊铺能力相匹配时,摊铺机能连续、均匀、不间断作业,此时路面平整度就好;拌合站的规模小,将直接影响到铺筑速度,使摊铺机频繁停机,直接影响路面的平整度;因此切忌摊铺机经常停机。拌合时间也很为关键,若拌和时间短,将造成混合料不均匀、离析现象,平整度很难保证。4摊铺过程中的控制路面平整度的保证首要环节是摊铺,摊铺机的性能参数,调整使用及人员操作最为重要。①摊铺机基准线对平整度的影响及对策。摊铺机一般具有自动调节厚度和找平装置,沥青砼路面摊铺前需要为摊铺机的自动找平装置确定一个准确的基准线,在确定这个基准线时,首先确定下承层表面高程与设计高程的差值,再通过设定基准线保证摊铺厚度。目前常用的基准线控制方法有:基准线钢绞线法、悬浮式基准梁、非接触式平衡梁法。一般路面基层和下面层须严格控制路面标高,基层和路面下面层摊铺采用基准线钢绞线法;中、上面层路面平整度、厚度为主要控制因素,高层控制相对次要,中、上面层路面摊铺采用悬浮式基准梁或非接触式平衡梁法能提高路面的平整度。② 摊铺机的速度以每分钟1.5~5m最宜,拌合机的生产能力和车辆运输,确保机械不停歇的原则,做到施工现场摊铺稳定连续、不间断来确定摊铺速度。摊铺速度过快,易造成摊铺层表面的粗颗粒在熨平板下沿摊铺方向滑动,使表面粗颗粒后方出现小坑小空洞,从而影响层面平整度和预压密实度;但亦不能太慢,否则会影响生产效率。要求摊铺机司机调整摊铺机熨斗平板的振激强度,达到高频低振幅,振激动力一致,使沥青混合料达到一定的密实效果,运输混合料的车辆应停放在摊铺机前30cm左右,不得碰撞摊铺机要使摊铺机推动混合料车辆的后轮,否则影响摊铺路面的平整度。基层及面层均应采用带自动找平功能的摊铺机具。③ 碾压的控制。沥青路面平整度和密实度的好坏,施工工艺对平整度合格率的高低起着重大的作用,碾压分为三个阶段:初压、复压和终压。碾压沥青混合料应采用组合碾压的方式,初压时首先采用双钢轮压路机,碾压2遍;复压紧接在初压后进行,应采用25T胶轮压路机,碾压4~5遍;终压采用双钢轮压路机,碾压2遍。碾压时除按规范标准进行外,应注意碾压路线和方向不得突然改变,以免使混合料产生推移和发裂。要先轻后重碾压,根据压路机的实际情况来选择不同的碾压速度,碾压时在不影响推移的情况下,加快碾压速度,尽快完成碾压工序,防止混合料的温度低造成碾压不均匀。如工作面太短,压路机必须增加调头或停车次数,它的不良操作对路面平整度有较大影响。5结语在沥青路面项目施工过程中,路面基层的平整度及沥青混合料的机械铺筑对沥青路面起着重要的影响,要对这方面进行严格的技术控制,沥青混凝土路面的平整度就会得到控制提高,也就保证了总体工程的质量水平,提高了路面工程质量。
范文八:沥青拌和站安全注意事项一、 人员着装要求1.拌和站工作人员要求穿工作服上班,控制室外拌和楼巡逻人员和配合工需要戴好安全帽,严禁穿拖鞋上班。二、 拌和楼运转工作期间1. 在开机器前控制室操作手需要拉喇叭示警,机器周围工作人员听到喇叭声后应离开危险部位,操作手在确认外面人员安全的情况下才能开动机器。2. 机器在运转当中工作人员不能擅自进行设备的维修,在确保安全的前提下方可进行维修,同时要让控制室操作手知道,控制室操作手只有得到外面人员的认可后才能重新开动机器。三、 拌和楼维修期间1. 人在高处工作时一定要系好安全带。2. 当有人在机器内部工作时需有人在外面照看,同时拌和机电源应切断,不经外面人员认可控制室操作手不能擅自开机。四、 铲车方面1.铲车在场地上料过程中要注意车前车后的人员,往冷料仓上料时一定要注意速度和位置,不能碰撞设备。五、 其他方面1. 在柴油罐和放刷车油桶的周围3米内不准抽烟,不准生明火,放油者一定要确保油不能漫出来。2. 放沥青时一定要先看好罐内沥青数量,把整个阀开好后才能开泵放沥青,同时严禁在沥青罐上抽烟。沥青拌和站岗位职责1. 沥青拌和站是沥青路面施工队的一个重要组成部分,主要负责沥青混合料的拌和,向前场按时按量地提供优质的沥青混合料。2. 拌和站操作手在站长的领导下工作,负责拌和站的操作、维修、保养,严格按照试验室提供的配合比和生产工艺生产,掌握机械运转情况,确保混合料的质量。3. 拌和站修理工负责设备的维修保养,严格按照设备的润滑时间表加注润滑油,同时在生产过程中在设备周围巡逻,发现情况及时处理。4. 配合班组人员配合沥青拌和站的生产,班长在干好本职工作的同时配合修理工巡视设备和保养设备,同时传达领导思想,组织班组人员完成领导临时交办的任务。5. 铲车司机在拌料期间主要是上料和清理溢料和回收粉,停机后负责料场原材料的堆放,同时完成领导交办的其他任务。6. 拌和站站长负责领导管理拌和站的全面工作,督促和检查各岗位工作人员的工作,掌握设备运转情况,制定和贯彻设备整体维修保养计划,处理设备潜在故障,保证按时按量地完成当天的施工任务。拌和站站长职责一. 拌合站站长负责领导管理拌合站的全面工作, 在拌合站范围内所出现的一切质量行政责任事故,由站长负一切责任。二. 拌合站的人员、机械设备要有明确的分工,实行定人、定位、定设备、定人管理。整个拌合机械维修与保养要严格按计划实施,保证机械设备完好率,达到每日拌合量的要求。三. 必须严格按操作规范进行,做到开机前先检查人员到位情况和拌合机的大概运转情况后,方可开机,如有违反操作规程者必须严处。四. 拌合的各种材料要严格按实验室给的配比配料拌合。配比不得随意漏项或更改,有什么情况要及时与试验室取得联系,便于指导拌合,要保证拌合时间,确保拌合质量。五. 拌合站的人员、设备等有关事情的处理实行包干。全部由拌合站站长负责处理。六。 对拌合出的砼料有质量间题,按材料损失量和人工机械成本费,经经理办公会研究对当机人员和站长给予罚款。拌和站操作手职责拌和站操作手在站长的领导下工作,负责本站拌和站的操作、维修、保养,对本站负一切技术、质量等责任。一. 必须加强学习,熟练掌握机器,微机的操作技术,保证拌和站正常工作,保证质量、产量。二. 负责维修保养本站的各种机械设备,合理安排时间进行维修和保养,以保证拌和能正常运转。三. 操作手必须遵循操作规程,做好开机前的各项准备工作,确保安全生产。四. 拌和砼料必须达到规定时间,严格控制材料配合比,保证不出废料。五. 禁止非工作人员进入拌和楼操作室及不安全区域,禁止用微机干不是拌和以外的事情,对违反规定者和质量问题经经理办公室研究,将对拌和手给予罚款。
范文九:核子密度仪检测沥青混凝土路面压实度的应用周瑞丰,杨晓青,李彦杰1.深圳市交运工程有限公司,广东深圳 518003;2.深圳市公路工程质量监督站摘 要:文中介绍核子密度仪的标定及使用方法,将核子密度仪和钻芯取样蜡封法检测压实度的对比试验结果,用于深圳市盐坝高速公路沥青路面施工检测,证实了核子密度仪检测高速公路沥青混凝土路面压实度的有效性和可靠性。关键词:核子密度仪;标定;沥青混凝土路面;压实度1 前言沥青混凝土路面具有施工速度快、行车舒适等许多显著优点,越来越多地运用到了高速公路,但对施工的机械设备及施工质量要求较高,除沥青含量、流值及稳定度外,沥青混凝土面层压实度也是其中比较重要的一个指标,因而快速准确检测压实度对加快施工进度及进行质量控制显得尤为重要。 深圳市盐坝高速公路是深圳市东部沿海的一条快速主干道,全长约30km,分A、B、C三段建设。已建成通车的A段路线全长10.384km,为双向六车道。其中包括长1500多m的大梅沙隧道,隧道为双洞三车道,净高5.0m(顶高7.8m)。路面采用三层沥青混凝土,表面层为开级配中粒式沥青抗滑层AK-16A,中面层为密级配中粒式沥青混凝土AC-20Ⅰ型,底面层为开级配粗粒式沥青混凝土AC-25Ⅱ型。路面施工工期非常紧张,加上受到施工场地的限制及影响,往往是底面层刚刚施工完毕,紧接着施工中面层。压实度检测如果全部采用钻芯取样法,则可能因为检测不及时,影响工程进度及工程质量。因而,为了加快施工进度及对质量进行及时有效的控制,采用核子密度仪进行快速无损检测压实度。按《公路工程质量检验评定标准》(JTJ071-98)规定,采用核子密度仪检测时,须经钻芯取样法对比试验检验,确认其可靠性。下面主要介绍核子密度仪检测沥青路面压实度的方法及在深圳市盐坝高速公路上的实际应用。2 核子密度仪的工作原理及检测方法2.1 仪器描述核子密度仪是一种以微处理机为核心的仪器,用于测量建筑材料和现场土体等的密度及含水率,快速而准确,其结果在液晶屏(LCD)上显示。核子密度仪有两个安全密封的放射性源。用其中的铯137所辐射的伽马射线进行密度测量,镅-241所辐射的中子射线进行含水率测量。基本技术参数为: ①密度检测范围:1.12~2.73g/cm。②含水率范围:0~0.64。③密度精度:反射式(BS)为±0.013g/cm;反射式沥青混凝土(AC)为±0.008g/cm。④试验模式:正常、薄层罩面与沟槽。检测沥青混凝土压实度时采用薄层罩面模式,反射式手柄置于BS位置,检测深度为71mm左右,应用于厚度大于76mm的路面压实度的测试;反射式手柄置于AC位置,检测深度为51mm,应用于薄层路面压实度的测试。⑤核子仪可存储128个记录,每个记录包括屏幕显示的全部数据,数据可直接由计算机打印出来。2.2 仪器的使用2.2.1 仪器标定由于核子仪中的辐射源随时间缓慢衰变,使用前必须用所提供的参考标准块进行标准计数,每做一次标准计数,原来的标准就被新的取代,用于仪器的测量计算,用这种方法来补偿辐射源的衰减。具体操作步骤如下: 3331121)在离开其他有辐射源的仪器最少4.5m、其他物体最少1.5m远的地方,将仪器放于随机提供的标准块上,然后用仪器对标准块进行计数;2)将仪器的手柄放于“SAFE”位置,按STD键,屏幕显示现有标准计数数据;按START键,本仪器进行256次样本试验,每次试验时间为1s,每试验一次,样本数目增加1,整个试验大约需要4.4min。3)标准计数结束时,仪器显示并存储新的标准计数数据,并用新的数据取代原来的数据。标准计数时,屏幕还显示Xi值,表示计数的X分布值,Xi是实际计数的概率分布与期望分布之比,其值接近于1.0(Xi值应为0.75~1.25)时,表示仪器工作正常。4)如果Xi值超出所期望的范围,重复进行标准计数,直至符合要求,否则,应进行故障处理。2.2.2 仪器现场测试操作检测沥青混凝土路面时,选择薄层方式,将仪器放于待检测的沥青混凝土路面上,根据沥青混凝土面层厚度选择手柄是放在BS位置,还是AC位置。手柄置于BS位置,辐射源位置提高,可检测深度71mm内的密度;手柄置于AC位置,放射线沿浅表进行,可检测深度为51mm内的密度。按MAX键,输入与待测路面相同沥青混合料的标准密度,按START键,开始现场检测压实度,每一次检测完成时间可调为30或60s。每一次测量完毕,编好测点号,每点依次记录下湿容重、水分重、干密度及压实度等数据。3 核子仪对比试验及现场检测压实度3.1 抽芯取样与核子密实度仪的对比试验按交通部《公路工程质量检验评定标准》(JTJ071-98)规定,核子仪检测沥青混凝土面层压实度必须与钻芯取样进行对比,因而在正式使用前必须进行对比试验,确定其回归方程,根据确定的回归方程经过换算后,按规范要求对1~3km路段进行质量检验评定。深圳市盐坝高速公路A段沥青混凝土路面分为三层,表面层、中面层及底面层,其厚度分别为4、5及6cm。现以底面层为例加以说明:底面层为AC-25Ⅱ型,厚度6cm,大于51mm,检测底面层压实度操作过程是:①检测前,在放置核子仪的地方,用细砂填补路表面的空隙,并均匀抹平;②输入底面层待测路段当日取样试验的沥青混合料标准密度;③选择将仪器手柄置于BS位置;④核子仪检测完后,在核子仪检测压实度的同一地方,用抽芯取样机钻芯取样,采用蜡封法、表干法或水中重法测出每一对应点的密实度。3.2 数据整理,建立线性回归方程①线性回归方程的建立:经过核子密度仪和钻芯取样对比试验,对其数学关系建立线性回归方程。抽取样本数量34个,进行线性回归方程的计算。其采样结果经数据处理分析得到图1所示抽芯-核子密度线性回归曲线、散点图,经线性回归分析后的回归方程为:Y=0.9349X+5.4853②相关系数的计算:经计算其相关系数R=0.9671。可见,抽芯压实度与核子密度仪测定的压实度之间具有95%以上的置信度。由线性回归方程和图1可知,抽芯法和核子仪法测定的密实度值具有良好的线性关系,其线性回归方程可作为核子密度仪测定密实度的计算公式使用。3.3 现场检测及结果评定所有按同一配合比施工的底面层压实度,用核子密度仪检测压实度后,采用该线性回归方程进行换算,然后按规范要求以1~3km长路段进行评定,确定是否满足规范压实度要求。压实度代表值:2式中: k——检验评定路段内各测点压实度的平均值;ta——t分布表中随测点数和保证率而变化的系数;S——检测值的均方差;n——检测点数;K0——压实度标准值。通过试验及换算评定,底面层施工压实度代表值及极值均满足规范要求。同理,检测中面层(AC-20Ⅰ)及表面层(AK-16A)压实度时,因为配合比发生变化,应该重新进行核子仪和钻芯取样法压实度对比试验,确定回归方程,进行换算后评定压实度是否合格。必须注意,因为中面层、表面层厚度分别为4及5cm,检测压实度时,核子仪手柄应置于AC位置。 4 结语1)通过抽芯法和核子密度仪法对比试验得到线性回归方程,用核子密度仪进行公路工程路面压实度检测,是完全可行的,能够满足现行的技术规范要求。2)按交通部《公路工程质量检验评定标准》(JTJ071-98)规定,高速公路每200m每车道检测一处压实度,比《公路工程质量检验评定标准》(JTJ071-94)中规定每200m每双车道检测一处的检测频率增加一倍。深圳市盐坝高速公路A、B段为双向六车道,1km每一面层需检测30处压实度,表面层、中面层及底面层每1km需检测90处。若以钻芯取样法检测,必须在路面上钻孔90个,既浪费时间,又对路面各层造成一定程度的破坏。若用核子密度仪检测,既减轻了试验检测的劳动强度,加快了试验检测速度及施工进度,也减轻了钻取芯样试验对路面的破坏,起到事半功倍的效果。因此,该方法值得推广使用。参考文献:(1)
JTJ032-94,公路沥青路面施工技术规范[S].(2)
JTJ071-98,公路工程质量检验评定标准[S].(摘自:中外公路.2003年第8期)
范文十:沥青混凝土芯样密实度试验记录表试验表 44 JTJ 052-2000 公路工程沥青及沥青混合料试验规程页码 编号:共页试项目名称 合 同 段 单位工程 分部工程 分项工程 试件校准密度(g/cm3) 马歇尔试验密度 (g/cm3) 检测 桩号 取样 位置 厚度 (mm) 总厚度 (mm)施工单位 监理单位 检验单位 工程部位 桩号范围 理论最大干密度(g/cm3) 马歇尔密度要求压实度(%) 气干 质量 (g) 水中 质量 (g) 表干质量 (g)施工日期 试验日期理论密度要求压实度(%) 水温(℃) 理论密度 实际密度 路面压实 (g/cm3) 度(%) 路面空隙 率(%) 马歇尔密 度路面压 实度(%)自检意见监理意见试验:复核:试验室主任:试验监理工程师:

我要回帖

更多关于 沥青混凝土骨料 的文章

 

随机推荐