ctct计算机断层扫描描相关手续

发布日期:日&|&标签:&&
以下内容,仅对会员开放。如需查看详细内容,请先 成为会员,已注册会员请
&&相关的其他招标项目信息
为保证您能够顺利投标,请在投标或购买招标文件前向招标代理机构或招标人咨询投标详细要求,有关招标的具体要求及情况以招标代理机构或招标人的解释为准。CT——电子计算机X射线断层扫描技术
我的图书馆
CT——电子计算机X射线断层扫描技术
CT是英语缩写,可以表示的意思有:宝石的重量单位克拉、电子计算机X射线断层扫描技术、凝血时间、电力系统中的电流互感器、建筑水电安装、十字绣布、分辨率等。
&&&&&&& 1.邻苯二酚的缩写,分子式C6H6O2
  2.建筑CT
  3.宝石的重量单位
  克拉[1](符号:CT) 1克拉=0.2克(200毫克)
  克拉作为宝石的计量单位,在现行的国际标准中作为法定的计量单位它的换算公式为:1克拉=200毫克=0.2克。
  古到今,在长达几百年的世界宝石贸易中,各国的珠宝商们都已习惯用克拉作为称量的标准。克拉一词最早起源于古希腊文,它是根据地中海东岸的一种树的名字翻译过来的。在人们没有精密的天平以前,便一直用这种很均匀而又不容易得到的树种子作为称宝石的砝码,1粒种子1克拉,1颗宝石与多少粒种子的重量相等就有多少克拉。随着世界上精密天平的发明和使用,各国纷纷把克拉定义为标准重量。最初克拉的重量在各国是不一样的,有的国家将210毫克定为1克拉,也有的以180毫克为1克拉,而英、法等国家规定1克拉是205毫克。后来,为了便于公式换算,在1907年将1克拉改定为200毫克,因此被人们称为公制克拉。
  克拉的数值是确定一颗宝石价值多少的重要的因素。所以说,如果宝石的克拉值越高,它的价值就越大。在1905年的南非发现了一颗钻石,这是人类在世界上有史以来发现的最大的一颗钻石。在中国目前保存的最大的一颗钻石于1977年发现于山东,名叫常林钻石,现在被作为国宝收藏在中国的中国人民银行。
  钻石重量以克拉(又称卡)计算。1克拉=200毫克=0.2克。一克拉分为一百份,每一份称为一分。0.75克拉又称75分,0.02克拉为2分。在其他条件近似的情况下,随着钻石的增大,其价值则呈几何级数增长;重量相同的钻石,会因色泽,净度,切工的不同而价值相差甚远。
  英文全称:Computed Tomography
  利用计算机技术对被测物体断层扫描图像进行重建获得三维断层图像的扫描方式。该扫描方式是通过单一轴面的射线穿透被测物体,根据被测物体各部分对射线的吸收与透过率不同,由计算机采集透过射线并通过三维重构成像。
  根据所采用的射线不同可分为:X射线CT(X-CT)以及γ射线CT(γ-CT)。
  CT的主要用途如下:
  1.医学检测:自从CT被发明后,CT已经变成一个医学影像重要的工具,虽然价格昂贵,医用X-CT至今依然是诊断多种疾病的黄金准则。
  2.工业检测:现代工业的发展,使得CT在无损检测和逆向工程中发挥重大的作用。
  3.安保检测。
  4.航空运输、运输港湾,大型货物集装箱案件装置。
  首先,计算机断层扫描为我们提供被测物品的完整三维信息;第二,由于电脑断层的高分辨率,不同物体对射线的吸收和透过率不同,即使是小于1%的密度差异也可以区分出来;第三,由于断层成像技术提供三维图像,依需要不同,可以看到轴切面,冠状面,矢切面的影像。除此之外,任意切面的图像均可通过插值技术产生。这给医学诊断、工业检测和科研带来了极大的便利。
  但是CT扫描带来的危害也必须引起重视。CT主要的危害来自于射线源,高能射线源能对人体组织及环境造成不可逆转的破坏,即使是医用的X射线CT,多次的累积使用,X射线依然会对患者被照组织产生一定的影响。
  英文全称:electronic computer X-ray tomography technique
  CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。
  CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就
可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。
  自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。
  1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。
  1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。
  1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。
  1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而今,CT已广泛运用于医疗诊断上。
  CT是用束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。
  CT设备主要有以下三部分:
  1.扫描部分由X线管、探测器和扫描架组成;
  2.计算机系统,将扫描收集到的信息数据进行贮存运算;
  3.图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到现在的多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。
  超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。
  CT图像是由一定数目由黑到白不同灰度的像素按矩阵排列所构成。这些像素反映的是相应体素的X线吸收系数。不同CT装置所得图像的像素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,像素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X线图像高。
  CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。
  x线图像可反映正常与病变组织的密度,如高密度和低密度,但没有量的概念。CT图像不仅以不同灰度显示其密度的高低,还可用组织对X线的吸收系数说明其密度高低的程度,具有一个量的概念。实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度。单位为Hu(Hounsfield unit)。
  水的吸收系数为10,CT值定为0Hu,人体中密度最高的骨皮质吸收系数最高,CT值
定为+1000Hu,而空气密度最低,定为-1000Hu。人体中密度不同和各种组织的CT值则居于-1000Hu到+1000Hu的2000个分度之间。
  CT图像是层面图像,常用的是横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建冠状面和矢状面的层面图像,可以多角度查看器官和病变的关系。
  分平扫(plain CT scan)、造影增强扫描(contrast enhancement,CE)和造影扫描。
  (一)平扫 是指不用造影增强或造影的普通扫描。一般都是先作平扫。
  (二)造影增强扫描 是经静脉注入水溶性有机碘剂,如60%~76%泛影葡胺60ml后再行扫描的方法。血内碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分团注法、静滴法和静注与静滴法几种。
  (三)造影扫描 是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10ml或注入空气4~6ml进行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。
  CT诊断由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。
  CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对颅内肿瘤、
脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤、脑梗塞与脑出血以及椎管内肿瘤与椎间盘脱出等病诊断效果好,诊断较为可靠。因此,脑的X线造影除脑血管造影仍用以诊断颅内动脉瘤、血管发育异常和脑血管闭塞以及了解脑瘤的供血动脉以外,其他如气脑、脑室造影等均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维实时显示,有希望取代常规的脑血管造影。
  CT对头颈部疾病的诊断也很有价值。例如,对眶内占位病变、鼻窦早期癌、中耳小胆指瘤、听骨破坏与脱位、内耳骨迷路的轻微破坏、耳先天发育异常以及鼻咽癌的早期发现等。但明显病变,X线平片已可确诊者则无需CT检查。
  对胸部疾病的诊断,CT检查随着高分辨力CT的应用,日益显示出它的优越性。通常采用造影增强扫描以明确纵隔和肺门有无肿块或淋巴结增大、支气管有无狭窄或阻塞,对原发和转移性纵隔肿瘤、淋巴结结核、中心型肺癌等的诊断,均很在帮助。肺内间质、实质性病变也可以得到较好的显示。CT对平片检查较难显示的部分,例如同心、大血管重叠病变的显圾,更具有优越性。对胸膜、膈、胸壁病变,也可清楚显示。
  心及大血管的CT检查,尤其是后者,具有重要意义。心脏方面主要是心包病变的诊断。心腔及心壁的显示。由于扫描时间一般长于心动周期,影响图像的清晰度,诊断价值有限。但冠状动脉和心瓣膜的钙化、大血管壁的钙化及动脉瘤改变等,CT检查可以很好显示。
  腹部及盆部疾病的CT检查,应用日益广泛,主要用于肝、胆、胰、脾,腹膜腔及腹膜后间隙以及泌尿和生殖系统的疾病诊断。尤其是占位性病变、炎症性和外伤性病变等。胃肠病变向腔外侵犯以及邻近和远处转移等,CT检查也有很大价值。当然,胃肠管腔内病变情况主要仍依赖于钡剂造影和内镜检查及病理活检。
  骨关节疾病,多数情况可通过简便、经济的常规X线检查确诊,因此使用CT检查相对较少。
  CT可以做哪些检查吗?
  1.头部:脑出血,脑梗塞,动脉瘤,,各种肿瘤,外伤,出血,骨折,先天畸形等;
  2.胸部:肺、胸膜及纵隔各种肿瘤,肺结核,,,,,肺不张,,骨折等;
  3.腹、盆腔:各种实质器官的肿瘤、外伤、出血,,,泌尿系结石、积水,膀胱、前列腺病变,某些炎症、畸形等;
  4.脊柱、四肢:骨折,外伤,,椎间盘病变,,肿瘤,结核等;
  5.骨骼、血管三维重建成像;各部位的MPR、MIP成像等;
  6.CTA(CT血管成像):,动脉硬化闭塞症,及夹层等;
  7.疾病:甲状腺腺瘤、甲状腺腺癌等;
  8.其他:眼科及,外伤;、鼻息肉、肿瘤、囊肿、
  由于CT的高分辨力,可使器官和结构清楚显影,能清楚显示出病变。在临床上,神经系统与头颈部CT诊断应用早,对脑瘤、脑外伤、脑血管意外、脑的炎症与寄生虫病、脑先天畸形和脑实质性病变等诊断价值大。在五官科诊断中,对于框内肿瘤、鼻窦、咽喉部肿瘤,特别是内耳发育异常有诊断价值。
  在呼吸系统诊断中,对肺癌的诊断、纵隔肿瘤的检查和瘤体内部结构以及肺门及纵隔有无淋巴结的转移,做CT检查做出的诊断都是比较可靠的。
  在心脏大血管和骨骼肌肉系统的检查中也是有诊断价值的。
  1.分辨率:是图象对客观的分辨能力,他包括空间分辨率,密度分辨率,时间分辨率。
  2.CT值:在CT的实际应用中,我们将各种组织包括空气的吸收衰减值都与水比较,并将密度固定为上限+1000。将空气定为下限-1000,其它数值均表示为中间灰度,从而产生了一个相对的吸收系数标尺。
  3.窗宽和窗位,窗宽是CT图像上显示的CT值范围,在此CT值范围内的组织和病变均以不同的模拟灰度显示。而CT值高于此范围的组织和病变,无论高出程度有多少,均以白影显示,不再有灰度差异;反之,低于此范围的组织结构,不论低的程度有多少,均以黑影显示,也无灰度差别。窗位是窗的中心位置,同样的窗宽,由于窗位不同,其所包括CT值范围的CT值也有差异。例如窗宽同为100H,当窗位为0H时,其CT值范围为-50~+50H。由上可见,同一CT扫描层面,由于选择不同的窗宽和窗位可获得各种观察不同组织结构的灰阶图像。
  4.部分容积效应:CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如实反映该单位内各种组织本身的CT值。在CT扫描中,凡小于层厚的病变,其CT值受层厚的病变,其CT值受层厚内其它组织的影响,所测出的CT值不能代表病变的真正的CT值:如在高密度组织中较小的低密度病灶,其CT值偏高;反之,在低密度组织中的较小的高密度病灶,其CT值偏低,这种现象称为部分容积效应。
  5.噪声:一个均匀物体被扫描。在一个确定的R0I(感兴趣区)范围内,每个像素的CT值[HU]并不相同而是围绕一个平均值波动,CT值的变化就是噪音。轴向(断层)图像的CT值呈现一定的涨落。即是说CT值仅仅作为一个平均值来看,它可能有上下的偏差,此偏差即为噪音。噪音是由来决定的。也即是由达到探测器的X-Ray量子数来决定的。强度越大,噪音越低。图像噪音依赖探测器表面之通量的大小。它取决于X线管的管电压,管电流,予过滤及准直器孔径等。重建算法也影响噪音。
  因此,在日常生活中的人群里,如感觉到身体不适,还是应该及早到医院做检查,以明确诊断。做到早检查,早发现,早诊断,早治疗。
CT图册(16张)
  计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是骶髂关节。CT优于传统X线检查之处在于其分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能CT图像上“原形毕露”。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。
  磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的毒面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。
  X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。
  随着工艺水平、计算机技术的发展,CT得到了飞速的发展。目前的多排螺旋CT投入实用的机型已经发展到了320排,同时各个厂家也在研究更先进的平板CT。现在CT与PET相结合的产物PET/CT在临床上得到普遍运用,特别是在肿瘤的诊断上更是具有很高的应用价值。
  凝血时间(clotting time,CT)是指血液离开血管,在体外发生凝固的时间。它与出血时间不同,主要是测定内源性凝血途径中各种凝血因子是否缺乏,功能是否正常,或者是否有抗凝物质增多。根据标本来源,凝血时间测定有:毛细血管采血法和静脉采血法。
  1.玻璃管法:5~10min;
  2.塑料管法:10~19min;
  3.硅管法:15~32min。
  凝血时间延长见于:
  1.先天性凝血因子缺乏:如各型血友病;
  2.获得性(后天性)凝血因子缺乏,如重症肝病、维生素K缺乏等;
  3.纤溶蛋白溶解活力增强:如继发性、原发性纤维蛋白溶解功能亢进等;
  4.血液循环中有抗凝物质:如有抗因子Ⅷ或因子Ⅸ抗体、弥散性血管内凝血(DIC )早期肝素治疗时等。
  凝血时间缩短见于:
  1.高凝状态:如促凝物质进人血液及凝血因子的活性增高等情况;
  2.血栓性疾病:如心肌梗死、不稳定型心绞痛、脑血管病变、糖尿病伴血管病变、肺梗死、深静脉血栓形成、妊娠高血压综合征和肾病综合征等。
馆藏&30246
TA的推荐TA的最新馆藏
喜欢该文的人也喜欢为什么医疗X光断层扫描成像(CT)技术还停留在 25 年前? | 日志 | 果壳网 科技有意思
这周参加的 workshop 今天终于出现了一个非常有意思的 talk,讲演者是 UCSD 放射肿瘤学系教授
Steve Jiang。这篇文章的题目来自于芝加哥大学放射诊断学系教授 Xiaochuan Pan 的一篇论文。问题一目了然:近二十年来,X 光断层扫描成像技术在学术界的进展一日千里。但是今天医学实践中主流应用的还是二十五年前的 Filtered Back Projection 方法。翻开任何一篇今天关于断层扫描的论文,都能看到现代方法的结果比 FBP 方法好了不知道多少倍(我自己也写过这个领域的论文,确是如此,下图从左到右反映了不同年代的技术,而医疗上至今仍然在应用最左边的技术)。但是学术界的成果完全没有在业界反映出来。这是为什么呢?这个问题的重要性可以通过下面的数据看出来。以美国为例,医疗放射剂量差不多占了于美国人身体所承受的全部辐射的三分之一,每年 CT 放射超过六千万人次(在中国这个数字当然更高)。另一方面,所有的现代 CT 研究都号称能够大幅降低对人体的辐射伤害。但是,今天去医院,我们遇到的仍然是高辐射低质量的过时技术,并且短期内看起来会一直是这样。这不仅是一个学术问题,而且是一个公共卫生安全问题。Jiang 对此的回答是这是研究体系之间的矛盾所导致的。CT 技术的进展主要体现为数学工具的飞跃,而临床医生不懂数学,也看不懂数学论文,更不容易找到容易交流的数学家讨论。应用数学家满足于在刊物上发表论文(二十年间这个领域的论文何止千万),却不关心临床上存在的实际问题。即使双方偶有交流,也停留在个案上,完全不足以推动产业的改变。从我自己的经验来看,这是相当切中肯綮的评论。从数学家的角度来看,一方面,甚至直到今天为止,很多数学家还满足于在一些过度简化的图像上(Shepp-Logan 就是个典型的例子)实验自己的数学模型,而完全不了解为什么这些模型会在实践中遇到巨大的困难。(反过来,这些过度简化的模型甚至恶化了医学界对数学工具的厌恶,认为它们都是纸上谈兵而已。我本人就遇到过此类相当不客气的评论。)另一方面,大多数数学家并无机会接触到第一手的医疗数据(这里也的确存在医疗法规和隐私管理的问题),所以无从建立在实践层面上比较算法优劣性的平台。其结果就是大家鸡同鸭讲,自说自话。平心而论,今天这个领域 90% 的研究确实如此。但是另一个困难更加本质:临床医疗业界普遍看不懂也不愿意看数学论文。这就要求一部分数学家承担起桥梁的职责,同医学界密切合作把数学工具引入临床实践,而这是个既困难又吃力不讨好的工作。数学家有自己评估学术成就的标准,而这种工作是无法被计入学术贡献的。(这里说的是美国的情形,在中国大概更糟。)结论呢?这不是一人一事一时一地的问题,而是跨学科跨产业的问题。注意到这个问题的人确实越来越多了,但是要指望现实层面的变革,至少目前来看是不现实的。参考文献:Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?Xiaochuan Pan, Emil Y Sidky and Michael VannierInverse Problems Volume 25 Number 12
本文由授权()发表,文章著作权为原作者所有。
所以需要互相科普一下……
那个恐怕不是科普能解决的啊,表示看不懂影像算法的未来小大夫飘过引用0.618的回应:所以需要互相科普一下……
CT的算法不是那个Radon变换么?能否科普一下近期有什么进展?
GE, 西门子之类的厂商也招了不少人呢。他们之间没有竞争么?没有使用新算法么?能否讲解得具体一些。医生里面也是有会用MatLab的
另外,闻道了一丝发财的味道。请介绍几个新算法,看看能否修改下申请个专利什么的。
CT,那是一帮内科大夫常用的东西,他们几年也不必做一次乘法。欢迎到眼科来,我们眼科医生讨论的是Zernike函数,是傅立叶变换,是频域OCT。这些在眼科都是热门词汇,虽然也许懂得人不多,或者没什么人真懂,但是我们愿意听数学家来讲。
引用goldengrape的回应:另外,闻道了一丝发财的味道。请介绍几个新算法,看看能否修改下申请个专利什么的。hahaha,你果然是个逐利之徒。。。
第一反应还以为说的是电流互感器,想不到这种现象是如此的与国际接轨,还以为只是我国特色。我想或许因为临床医疗与医院的收益息息相关。如果要推动技术的进步,需要解决的不单止是理论与实践结合的问题,更关键的是医院需要收回他们购买设备和技术成本,还有人员培训成本,对于利益为先的医院来说,引进新技术的前提是预期收益要足够好。
没什么不好意思的,如果能从GE之类的公司嘴里撕下一块肉来,还是很有面子的。不过CT这一块我太业余了。得从头学起。我不明白的是其他逐利之徒们为什么没有行动?如果真是改善这么大,怎么会无人响应?是什么阻碍了他们?这绝不仅仅是临床医生看不懂数学论文那么简单。中国的医学教育是从大学本科开始的,数学基础比较差,(即使如此,我还是知道radon变换的)国外是从研究生才开始医科,很有可能有本科读数学的去了医学院,凭他们的数学基础,在拿MD的时候,做个这方面的题目肯定是可以的。在CT上,3D重建也是显学,甚至在苹果玩过个开源软件。对于3D重建,二维的数据处理是基础,应该也不会那么差吧。另外,临床的CT数据并不难获得。木遥兄有兴趣,我去找放射科的同学要点就是。
"恶化了医学界对数学工具的厌恶"读着感觉不对。。。
这就需要政府和企业家来搭桥了
没想通,有新技术可用的话,让生产医疗设备的公司们去动脑筋啊,可以提高自己生产的设备的竞争力,明显有利可图的,现在比较大的医院都不缺钱,如果有辐射量低成像更清晰的CT,肯定都愿意更新设备的。这里面应该不关医生看不懂数学论文的事,应该和数学家沟通的是生产CT设备的公司研发组人员,医院买来仪器,然后影像科技术组人员操作仪器获得图像,诊断组人员解读图像,完整的CT报告发给临床医生,可以看到中间隔了很多层了!
以美国为例,医疗放射剂量差不多占了于美国人身体所承受的全部辐射的三分之一,每年 CT 放射超过六千万人次(在中国这个数字当然更高)怎么会当然更高?死理性派表示,没有数据支持,很难认同
引用眼瞓的Tiger的回应:第一反应还以为说的是电流互感器,想不到这种现象是如此的与国际接轨,还以为只是我国特色。我想或许因为临床医疗与医院的收益息息相关。如果要推动技术的进步,需要解决的不单止是理论与实践结合的问题,更关键的是医院需要收回他们购买设备和技术成本,还有人员培训成本,对于利益为先的医院来说,引进新技术的前提是预期收益要足够好。如果只是算法改进的话,看似软件升级就可以了,相比重买机器,并不是太多的钱。不过医疗器械的厂商往往很邪恶。甚至连个数据接口都不肯开放。
缺的是一个有胆识有魄力的企业家来推动。
这事是企业该做的。
太中肯了。同事里也有做医学图像的,从合作单位拿到几十张数据已经激动不已。个人瞎猜,也许解决方案是这样的:存在一家横跨各个行业的集团式企业,既有闲钱搞算法,又有能力做硬件,还有实力开一大批私人医院...三个部门联合起来,从头到尾推动改革。
哈哈哈,在workshop里蹲了四天的人飘过……并且,作为BME人,我表示我们就是砸墙的!!
北大那么多数学家,怎么不来医学院搞一搞这方面的东西呢?多好的事情啊,有名有利,又有意义。
我遇到过新型MRI的案例,看效果要比老式的MRI高级很多,好像也是应用了数学原理。所以想问一下木遥,你说的这个现状也包括其它医学仪器的领域吗?
(C)2017果壳网&&&&京ICP证100430号&&&&京网文[-239号&&&&新出发京零字东150005号&&&&
违法和不良信息举报邮箱:&&&&举报电话:

我要回帖

更多关于 ct断层扫描成像原理 的文章

 

随机推荐