有机化学为什么断一个单键两边各多一个氢原子呀真没明白?

1. _ 掌握羧基的结构和羧酸的化学性质
2._掌握诱导效应和共轭效应对羧酸酸性的影响
3._ 掌握羧酸的制备方法
4, 了解重要的羧酸的主要用途
5._ 了解二元羧酸取代羧酸的特性反应
羧酸的分类,命名和结构
羧酸的物理性质和光谱性质
羧酸可看成是烃分子中的氢原子被羧基(-COOH)取代而生成的化合物.其通式为RCOOH.羧酸的官能团是羧基.
羧酸是许多有机物氧化的最后产物,它在自然界普遍存在(以酯的形式),在工业,农业,医药和人们的日常生活中有着广泛的应用.
故羧基的结构为一 P-π共轭体系
第一节 羧酸的分类,命名和结构
当羧基电离成负离子后,氧原子上带一个负电荷,更有利于共轭,故羧酸易离解成负离子
由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.
羧酸的性质可从结构上预测,有以下几类:
蚁酸 安息香酸 草酸 琥珀酸(丁二酸)
柠檬酸(3—羟基—3—羧基戊二酸)
肉桂酸(3—苯基丙烯酸)

a.含羧基的最长碳链作为母体,按照主链碳原子数目命名为'某'酸 .
b.编号.从羧基C原子开始编号.(用阿拉伯数字或希腊字母.)
c. 如有不饱和键要标明烯(或炔)键的位次.并主链包括双键和叁键.将取代基的位次,数目,名称依次写在母体名称前面.,数目,名称依次写在母体前面
d. 脂环族羧酸.简单的在脂环烃后加羧酸二字,复杂的环可作为取代基.
e.芳香酸可作脂肪酸的芳基取代物命名.
f.多元羧酸:选择含两个羧基的碳链为主链,按C原子数目称为某二酸.
(3-氧代丙酸或3-羰基丙酸)
(3-氧代丁酸或乙酰乙酸)
1.按烃基的种类可分为:
a.脂肪族羧酸:饱和羧酸,不饱和羧酸
2.按羧基数目可分为:一元羧酸,二元羧酸,多元羧酸_
物态:C1~C3 有刺激性酸味的液体,溶于水.
C4~C9 有酸腐臭味的油状液体,难溶于水.
二元羧酸,芳酸为晶体 .
羧酸是极性分子,能与水形成氢键,故低级一元酸(C1~C4)可与水互溶,但随分子量↑,在水中的溶解度↓,从正戊酸开始在水中的溶解度只有3.7 %,>C10的羧酸不溶于水.二元酸易溶于水,芳酸的溶解度也很小.苯甲酸的溶解度为 0.34g / 100gH2O
①熔点:一元羧酸从C6开始,随分子量↑,呈锯齿形上升.偶数碳原子羧酸的m.p>相邻两个同系物的m.p.出现熔点双曲线.主要是偶数碳的对称性高,分子在晶体中排列整齐,晶格能较大,熔点较高.
直链饱和一元羧酸的沸点较分子量相近的醇要高.如:甲酸,乙醇分子量均为46,沸点为100.5℃,78.3℃;乙酸,丙醇分子量为60,沸点为117.9℃,97.2℃.
主要原因为:羧酸以氢键彼此缔合, a) 此键键能大于醇之间氢键的键能.(酸中的氢键键能: 30kJ / mol ,醇中氢键键能:25kJ / mol .)b) 低级酸在蒸汽中也是以二聚体存在,所以沸点高.
由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.
羧酸的性质可从结构上预测,有以下几类:
二,羧基上的羟基(OH)的取代反应
羧酸的酸性比水,醇强,甚至比碳酸的酸性还要强.
羧酸离解后生成的RCOO- 负离子,由于共轭效应的存在,氧原子上的负电荷则均匀地分散在两个原子上,因而稳定,容易生成.
羧酸能与碱作用成盐,也可分解碳酸盐.

此性质可用于醇,酚,酸的鉴别和分离,不溶于水的羧酸既溶于NaOH也溶于NaHCO3,不溶于水的酚能溶于NaOH不溶于NaHCO3,不溶于水的醇既不溶于NaOH也溶于NaHCO3.含羧基的有机物,在碱中可增加水溶性.如:青霉素G是含羧基的有机物,不溶于水.一般制成钾钠盐增加水溶性,易于吸收.
影响羧酸酸性强度的因素
1,电子效应对酸性的影响
2,取代基位置对苯甲酸酸性的影响

1,电子效应对酸性的影响
1°吸电子诱导效应使酸性增强.
2°供电子诱导效应使酸性减弱.
3°吸电子基增多酸性增强.
2) 共轭效应 当羧基能与其他基团共轭时,则酸性增强
4°吸电子基的位置距羧基越远,酸性越小.
酯化时,羧酸和醇之间脱水可有两种不同的方式:
究竟按哪种方式脱水,与羧酸和醇的结构及反应条件有关.经同位素标记醇的办法证实:
Ⅰ 伯醇和仲醇与羧酸的酯化是按酰氧键断裂进行的.
Ⅱ 叔醇与羧酸的酯化是按烷氧键断裂进行的.
H2O中无O18,说明反应为酰氧断裂.
1°,2°醇为酰氧断裂历程,
3°醇(叔醇)为烷氧断裂历程.
亚磷酸不易挥发,故该法适用于制备低沸点酰氯.
磷酰氯沸点较低(105.3℃),故适用于制备高沸点酰氯
该法的副产物均为气体,有利于分离,且产率较高.
因乙酐能较迅速的与水反应,且价格便宜,生成的乙酸有易除去,因此,常用乙酐作为制备酸酐的脱水剂.
1,4和1,5二元酸不需要任何脱水剂,加热就能脱手生成环状(五元或六元)酸酐.
羧酸在脱水剂作用下加热,脱水生成酸酐.
不对称酸酐用羧酸盐与酰氯反应制备
二元酸的二铵盐受热则发生分子内脱水兼脱氨,生成五元或六元环状酰亚胺.
在羧酸中通入氨气或加入RNH2,R2NH ,可得到羧酸铵盐,铵盐热解失水而生成酰胺.
羧酸在一定条件下受热可发生脱羧反应.
饱和一元羧酸在加热下较难脱羧,但低级羧酸的金属盐在碱存在下加热则可发生脱羧反应.
洪塞迪克尔(Hunsdiecker)反应:羧酸的银盐在溴或氯存在下脱羧生成卤代烷的反应.
_此反应可用来合成比羧酸少一个碳的卤代烃.
羧酸与 HgO + Br2 也可得卤烃,称为 克利斯脱反应
一元羧酸的α碳原子上连有-NO2,-C≡N,
-CO-,-Cl 等强吸电子集团时,易发生脱羧.
某些芳香族羧酸不但可以脱羧,且比饱和一元酸容易.
现可采用气相催化脱羧有羧酸直接来制备酮.
电解羧酸盐溶液可在阳极发生烷基的偶合,生成烃,
该反应称为Kolbe反应.
Kolbe反应用于二元酸单酯电解生成长链二元酸酯也
脂肪族羧酸的α- 氢原子也可被卤原子取代,但其反应活性要比醛,酮低的多,通常要在少量红磷,硫等催化剂存在下方可进行.
控制条件,反应可停留在一取代阶段.
α-卤代酸很活泼,可以进行亲核取代反应和消除反应.如:
羧酸不易被还原.但在强还原剂LiAlH4作用下,羧基可被还原成羟基,生成相应的1°ROH
该法不仅产率高,而且不影响C=C和C≡C的存在,可用于不饱和酸的还原.

乙硼烷也可将羧基还原为伯醇
来源: 羧酸广泛存在与自然界,常见的羧酸几乎都有俗名.自然界的羧酸大都以酯的形式存在于油,脂,(高级脂肪酸甘油酯)蜡(高级脂肪酸高级一元醇酯)中.油,脂,蜡水解后可以得到多种羧酸的混合物.
(一)烃的氧化——有α-H的芳烃才能氧化为苯甲酸
(二) 伯醇或醛的氧化——制备同碳数的羧酸
甲基酮氧化——制备减少一个碳原子 的羧酸
(四) 烯烃,炔烃的氧化——适用于对称烯烃,炔烃和末端烯烃,炔烃
(五) 无α— H 的醛在浓碱中加热,可得酸和醇
环酮可被氧化为内酯,进而被氧化为二酸
(一) Grignard试剂与CO2作用——制备增加一个碳原子的羧酸
(二)烯烃羰基化法——制备增加一个碳原子的羧酸
烯烃在Ni(CO)4催化剂的存在下吸收CO和H2O而生成羧酸.
1°,2°,3°RX都可使用.但乙烯式卤代烃难反应.
(二)羧酸衍生物的水解
油脂和羧酸衍生物得羧酸,及副产物甘油和醇.
(三)通过乙酰乙酸乙酯,丙二酸二乙酯合成各种羧酸.
(一) 腈的水解——制备增加一个碳原子的羧酸
① 甲酸的酸性显著高于其它饱和一元酸
② 甲酸具有还原性,能发生银镜反应.
③ 甲酸也能使高锰酸钾溶液退色.
④ 甲酸具有杀菌力,可作消毒或防腐剂.
⑤ 甲酸与浓硫酸加热,则分解生成一氧化碳和水.

甲酸的水溶液不能用蒸馏的方法得到纯甲酸,要用
无水甲酸钠加入含硫酸的甲酸中蒸馏得到.或
1.物态 二元羧酸都是固态晶体,熔点比相近分子量的一元羧酸高得多.随碳原子数目的增加,熔点呈下降趋势,偶数碳比奇数为高.
2.溶解度 比相应的一元酸大,易溶于乙醇,难溶于其他有机溶剂.
二,二元羧酸的化学性质
乙二酸(草酸)具有还原性,易被氧化成二氧化碳和水.
二,二元羧酸的化学性质
顺反式结构在其他物理性质方面也有差异,如:水溶性顺式大于反式(顺式偶极矩大),熔点反式高于顺式(反式对称性高,晶格能大)
2.二元羧酸受热反应的规律
Blanc规则(布朗克) :在可能形成环状化合物的条件下,总是比较容易形成五元或六元环状化合物(即五,六元环容易形成).
(1) 乙二酸,丙二酸受热脱羧生成一元酸
(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐
(3)己二酸,庚二酸受热既脱水又脱羧生成环酮
二元酸与二元醇反应可生成环酯(但仅限于五元环或六元环)
(1) 乙二酸,丙二酸受热脱羧生成一元酸,
(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐,
(3)己二酸,庚二酸受热既脱水又脱羧生成环酮,
羧酸分子中烃基上的氢原子被其他原子或子团取代后形成的化合物称为取代酸.
取代酸有卤代酸,羟基酸,氨基酸,羰基酸等,其中卤代酸,氨基酸将在有关章节中讨论,这里只讨论羟基酸和羰基酸.
3.重要的羟基酸 (自学)
分子中含有羰基,有含有羧基的化合物称为羰基酸,如丙酮酸,3-丁酮酸等.
1)卤代酸水解 用碱或氢氧化银处理α,β,γ等卤代酸时可生成对应的羟基酸.
2) 氰醇水解 制α-羟基酸
具有醇和酸的共性,也有因羟基和羧基的相对位置的互相影响的特性反应.主要表现在受热反应规律上.
β-羟基酸受热发生分子内脱水,主要生成α-β
α-羟基酸受热时,两分子间相互酯化,生成交酯.
γ-和δ-羟基酸受热,生成五元和六元环内酯.
α-和β-羟基酸还有被氧化后再脱羧的性质
α-和β-羟基酸的降解反应:
这是制备高级脂肪醛酮的方法
_____ 自然界中的羟基酸
存在:酸牛奶(外消旋),蔗糖发酵(左旋的),肌肉中(右旋的).
用途:具有很强的吸湿性;工业上作除钙剂(钙盐不溶于水);食品工业中作增酸剂;钙盐可补钙.
② 苹果酸(α-羟基酸)
存在:未成熟的果实内;植物的叶子中;自然界中存在的是左旋体.
用途:制药和食品工业.
存在:多种水果中;或以盐的形式存在于水果中.
用途:可用作酸味剂,其锑钾盐有抗血吸虫作用.
存在:多种植物的果实中;动物组织与体液中,为无色晶体.
用途: 食品工业的调味品(有酸味),也用于制药业.
注意:羟基与羧基间的距离大于四个碳原子时,受热则生成长链的高分子聚酯.
α-和β-羟基酸还有羟基被氧化后再脱羧的性质.
讨论: 写出下列反应的产物℃
讨论:下列反应的产物是
1,羰基酸具有羰基和羧酸的典型反应.
2,_ 酮酸的特性反应
α-酮酸与稀硫酸共热时,脱羧生成醛.
β-酮酸受热易脱羧生成酮._
凡是能释放质子的任何分子或离子都是酸.
布伦斯特认为酸碱强度可根据电离常数来比较
路易斯酸是电子对的接受体
路易斯碱是电子对的给予体

依据成键两原子间共用电子的对数,可以将共价键分为单键、双键和叁键。

两原子间共用 一对电子的共价键称为单键,如C—C、C—O、C—H;两个原子间共用 两对电子的共价键称为双键,如C=C、C=O;两原子间共用 三对电子的共价键称为叁键,如C≡C、C≡N。

甲烷分子为正四面体构型,中心碳原子与4个氢原子形成4个C—H单键,任意两个键之间的夹角都是 109.5°。烷烃分子中的碳原子与其它原子形成4个单键,键角接近109.5 o ,所以烷烃分子中的碳链是 折线型的结构。

乙烯是 平面型分子,分子中存在C=C双键,2个碳原子和4个氢原子共平面。双键不能转动,双键碳上连接的原子始终与双键共平面,也与碳碳双键周围的 氢原子共平面,相邻两个键的键角约为 120°。


乙炔是 直线型分子,分子中2个碳原子和2个氢原子处于 同一条直线上,分子中存在C≡C叁键,相邻键的键角为 180°。形成叁键的碳原子以及与之直接相连的原子 共线。

键参数——表征化学键性质的物理量,如键能、键角、键长、键的极性等

键长:成键两原子的原子核间的距离。

键角:分子中一个原子与另外两个原子形成的两个共价键之间的夹角。

键能:以共价键结合的气态下的分子,断开单位物质的量的某键时所吸收的能量。

一般键长越短,键能越大,化学键越稳定。


比较各键键能,双键与叁键键能是单键键能的二倍和三倍吗? 为什么呢?

乙烯和乙炔化学性质活泼,是因为只需要较小的能量就能使双键中的一对共用电子或叁键中的两对共用电子断裂。双键和叁键中存在容易断裂的不稳定的——π键。

认识σ键、π键和大π键

原子轨道重叠形成共价键,“头碰头”式重叠形成σ键,“肩并肩”式重叠形成π键。σ键比s键比π键重叠程度大,键能高,更稳定。


两个碳原子间形成单键时,总是形成较稳定的σ键,当两个碳原子形成双键或叁键时,受轨道在空间的延展方向的影响,只能有一对成键轨道以“头碰头”式重叠形成σ键,其他轨道只能以“肩并肩”式重叠形成π键。双键中只有一个σ键和一个π键,叁键中有一个σ键和二个π键。


苯分子中的碳原子的三个原子轨道采取SP2 方式杂化,6个碳原子形成平面正六边形结构,分子中的12个原子共平面。每个碳原子中都有一个垂直于苯环的未参与杂化的原子轨道,其中各有一个电子,这6个轨道以“肩并肩”的方式形成一个特殊的共价键,6个电子被6个碳原子共用,形成特殊的大π键。

(1)非极性共价键(简称非极性键)

成键两原子 相同,共用电子不偏向任何一方,因此参与成键的两个原子 不显电性。非极性共价键可存在于 单质、无机化合物、有机物中。

(2)极性共价键(简称极性键)

成键的两原子 不同,它们吸引电子的能力 不同,共用电子对因一方吸引电子的能力较强(电负性大)而偏向该方,使该方的原子带部分 负电荷,另一方原子带部分 正电荷。两原子吸引电子的能力相差越大(即电负性差值越大),该共价键的极性越 强。

电负性——元素的原子成键时吸引电子能力的相对强弱。元素的电负性越大,相应的原子成键时吸引电子的能力越强。F元素的电负性最大。

二、有机化合物的同分异构现象

同分异构现象: 我们把分子式相同,结构不同的现象称为同分异构现象。

同分异构体: 具有同分异构现象的化合物称为同分异构体。

1、同分异构体具有相同的分子式,必然具有相同的相对分子质量。是否具有相同分子质量的化合物一定是同分异构体?

2、最简式相同的物质是否为同分异构体?

(解答:1、不一定,例如C 9 H 20 和C 10 H 8 ;2、不是,如苯和乙炔最简式均为“CH”,但二者分子式不同,不是同分异构体。)

1、碳骨架异构: 碳原子之间连接成不同的骨架结构而造成的异构。

2、官能团位置异构: 官能团在碳链上位置不同而造成的异构。

3、官能团类型异构: 官能团的种类不同,或有机物类别不同而造成的异构。


书写有机物的同分异构体时,一般情况下按照:

官能团位置异构→碳骨架异构→官能团类别异构

注意:芳香族化合物的同分异构体,取代基在苯环上的位置具有邻、间、对三种。

*立体异构:组成相同、结构相同,原子在分子中的排列状况不同而产生的异构体。

顺反异构:单键可以沿着碳碳键轴旋转,而双键不能沿着双键旋转。但是含双键的有机化合物不一定存在着顺反异构。



对映异构:有机物分子中的饱和碳原子上连接4个不同的原子或原子团时,可以有两种互为镜像,但不能彼此重合的四面体空间结构,这两种构型互为同分异构体。

这两种结构呈镜像关系,就仿佛人的左右手,看似相同,实则不能重合,我们把连有四个不同基团的碳原子形象地称为手性碳原子。

同位素 同素异形体 同系物 同分异构体 四个概念之间的关系


三、有机化合物结构与性质的关系

1、官能团与有机物性质的关系

一些官能团含有极性较强的键,如-OH,或者官能团中含有不饱和的碳原子,易发生相关的化学反应。

官能团与有机物性质的关系


2、不同基团的相互影响与有机化合物性质的关系

由于推电基的推电作用或吸电基的吸电作用,使有机物分子中的邻近基团往往存在着相互影响,从而导致有机物表现一些特性。例如:


例1. 描述H 3 C-CH=CH-C≡C-CF 3 分子结构的下列叙述中,正确的是( )

A. 6个碳原子有可能都在一条直线上

B. 6个碳原子不可能都在一条直线上

C. 6个碳原子有可能都在同一平面上

D. 6个碳原子不可能都在同一平面上

解析:由乙烯分子的构型可知原子团的结构为:



它的4个碳原子一定不在同一条直线上,而是在同一个平面上。是直线型构型,2个碳原子与2个氢原子都在同一条直线上,所以


中4个碳原子也在一条直线上。

依据乙烯、乙炔分子的构型进行联想、迁移、归纳、综合就可得出结论。

互为同分异构体(称作“顺反异构体”),则化学式为C 3 H 5 Cl链状的同分异构体共有( )



注意不是所有的含双键物质都有顺反异构现象。

例3. 已知二甲苯有3种同分异构体,则四氯苯有________种同分异构体。

解析:四氯苯的苯环上有两个H,二甲苯的苯环上有两个甲基,则H和甲基的异构种类完全相同,又因二甲苯有3种同分异构体,故四氯苯也有3种同分异构体。

熟悉由于苯环上位置不同带来的异构方式,同时要注意灵活迁移。

例4. 写出C 6 H 14 所有同分异构体的结构简式,写出分子式为C 6 H 12 的所有环烷烃的结构简式。

主链上少1个碳原子,支链上有1个甲基的:

主链上少2个碳原子,支链上有2个甲基的:


环烷烃:6个碳的环烷烃:5个碳的环烷烃:


同分异构体的书写是一项重要技能,应该反复训练。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

我要回帖

更多关于 有机物中的化学键都是共价键吗 的文章