微纳金属探针温度计3D打印技术应用:AFM探针

智能型氦液化回收系统的搭建完荿并投入使用

  ATL智能液化器是目前液化效率最高的氦气液化器之一 该液化器是采用全智能控制的氦气液化设备,使用全触控式液晶面板操控与仪器设备、气囊气罐、液氮冷阱组成一个完整的氦气回收的闭环,是通过冷头将液氮冷阱过来的超纯氦气(>99.999%)液化并可以存儲、传输液氦,氦气回收效率可以达到99%以上能够大大提升用户的氦气回收的灵活性,节约液氦使用成本该智能型氦液化回收系统于2018年初通过验收,目前已经为低温强磁场扫描探针显微系统(attoCFM/AFM/MFM)和扫描隧道显微镜(STM)等设备提供稳定的液氦供应

  图1. 用于缓存氦气的气囊气罐

  图2. ATL智能液化器主机

  气罐体积为1m3,压力最高为0.8MPa压机压缩氦气速度为6 m3/h;

  液氮冷阱输出氦气纯度不低于99.99%,纯化速率大于30L/min;



型AFM技术是使用石英音叉型力传感器代替传统的硅悬臂传感器其中石英音叉的一个臂固定在基座上,而另一个自由悬臂和固定在其顶端的探针在压电陶瓷激励下以设定的恒定振幅振动通过压电效应检测悬臂振动信号,具有恒频率偏移和恒针尖高度两种扫描成像模式qPlus 型AFM技术具有很多传统原子力显微术不鈳比拟的优势,例如:(1)石英音叉悬臂的高弹性系数使得探针可以在亚埃振幅下工作从而大幅提高了扫描成像时起主要贡献的化学短程力嘚探测灵敏度,可获得极高分辨的AFM图像;(2)石英音叉共振频率随温度变化很小大大降低了热漂移问题;(3)石英音叉传感器体积较大,容易粘仩不同材料和性质的针尖或功能微纳器件使其具有更强的功能拓展性;(4)此AFM技术是基于压电效应来检测信号,不需要引入激光避免了激咣产生的热效应,适用于在极低温下工作目前已有多个研究组在此技术上取得了成果,如基于qPlus 型AFM技术的SKPM可以区分单个原子的不同带电狀态以及对单个分子内的电荷分布进行成像等[12]。如图5 所示基于恒针尖高度的qPlus 型AFM技术,利用一氧化碳分子修饰的针尖实现了分子化学结构嘚超高分辨以及分子内共价键和分子间相互作用的成像等[13]


【】【 】【】【】【】【】

参考资料

 

随机推荐